Remote Sensing Principle of Ocean Color

 Away from both sun glitters and whitecaps, the satellite-observed reflectance at wavelength λ, ρ_t (λ), includes the contribution from atmosphere (ρ_{path} (λ)) and ocean (ρ_w(λ)), i.e.,

$$\begin{split} \rho_t \left(\lambda \right) &= \rho_{\text{path}} \left(\lambda \right) + t(\lambda) \ \rho_w(\lambda). \\ \text{where } \rho_{\text{path}} \left(\lambda \right) &= \rho_r(\lambda) \ \text{(Rayleigh scattering)} \\ &\quad + \rho_a \left(\lambda \right) \ \text{(aerosol scattering)} \\ &\quad + \rho_{\text{ra}} \left(\lambda \right) \ \text{(interaction);} \\ \rho_w(\lambda) \ \text{is the reflectance resulting} \end{split}$$

from oceanic species;

t (λ) is the diffuse transmittance.

- At the NIR wavelength (open ocean) or the short-wave (turbid water), $\rho_{\text{path}} (\lambda_{\text{NIR or SW}}) \cong \rho_t (\lambda_{\text{NIR}} \text{ or } \lambda_{\text{SW}}).$ Thus, $\rho_{\text{path}} (\lambda_{\text{VIR}})$ can be derived from $\rho_{\text{path}} (\lambda_{\text{NIR}} \text{ or } \lambda_{\text{SW}})$.
- Then, $\rho_w(\lambda_{VIR})$ can be derived from satellite-measured $\rho_t(\lambda_{VIIR})$ and $\rho_{path}(\lambda_{VIR})$.
- Finally, the Chlorophyll concentration is derived from $\rho_w(\lambda_{VIR})$ based on a given bio-optical model.

