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The intent of this presentation is to make the concept of 
optimal sounding retrievals as intuitive as possible.  To do 
so, I am starting from simplest model I can think of and 
building toward the retrieval equation.  As considerations 
are added to make it close to the retrieval equation, it gets 
increasingly complicated.  It does not follow all the way the 
through and at the one point, I have to start with 
conventional approach to get to the exact equation.  Strictly 
following this approach only gets you close.  Never the 
less, it does give useful insight that complements the more 
conventional approach.  
 
Most people understand the concept of averaging to reduce 
errors.  If the errors are equal, it is easy.  If one is more 
accurate, then obviously you want to weight the one that is 
more accurate more.  This is all that both 1dvar retrievals 
and the data assimilation used in numerical models are.  
The question is how much more?  We start with the 
Equation for weighted average 
 

)()( 222111 εεε +⋅++⋅=+ TWTWT averagedaveraged                                    . 
 
But we also have to constrain the weights so that 
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to keep the units.  Otherwise we would start with inches 
and end Kellicams or some equally obscure unit.  
Combining equations gives 
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We want to find the weight that gives the minimum 
variance.  To do so, we need to calculate the variance by 
squaring the equation 
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Since we are interested in the variance over a sample, we 
note that since the errors are random, cross products 
between ε  and T have an expected value of zero and can be 
dropped out.  A full expansion would still include terms 
with T  but we know they will drop later so we will skip 
them to keep things simple.  Then taking the derivative of 

averagedε  with respect to 1W  gives 
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Solving for 1W and 2W gives 
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and manipulation gives an alternate form 
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It is interesting to note that what the weights really do is 
scale the quantities so that the scaled variances are equal so 
that equal variances are added just like the simple case we 
started with.  This is demonstrated below 
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To make things consistent with retrieval literature, we will 
rename the errors by calling 
 

1ε=b      and     2ε=y   to get 
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Up till now, we have been considering like things, as in 
temperatures with the same units.  But if the units were 
different, one would have to have multiplied by a scaling 
factor to convert the units.  The scaling factor also affects 
the values of the weights.  For soundings, the scaling factor 
is often a function.  But the common methods linearize the 
function about the point defined by the current estimate of 
the truth.  This is usually the background for the first 
iteration and the current retrieval for later iterations.  In any 
case, for a given iteration, the function is evaluated and the 
value is a constant just like any other scaling factor.  We 
will denote the scaling factor by the letter K .  Including the 
scaling factor gives 
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Note that the errors are also scaled so the scaling factor is 
included in the weight as well.  We will talk more about 
that later, but first we will subtract a value from both sides.  
It could be any value, but we will choose the value given 
by the background.  Doing so gives 
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Since the weights sum to 1.0, the guess can be moved 
inside the brackets to give 
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Converting the guess to the same units as 2T  gives and 
remembering that we set the guess equal to the value of 1T  
gives 
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but note that zero still has an error distribution given 
byb and the second term has one given by y  
 
This equation can also be written as 
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Remember that for our scalar case without any units 
conversion, 2W can be written as 
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But since we are now using y  this becomes 
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When the units are included it becomes 
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Which results in 
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which can be simplified to  
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There is yet another consideration.  That is the definition of 
y .  Up till now, it has been the error in the measurements.  
When we subtracted a guess, y remained unchanged.  
However, when y  becomes )(gf  the process involves the 
calculation of radiances from the guess state (i.e. 
temperature profile).  Even though we know guess 
perfectly (it is just a set of numbers) the process of 
calculating radiances from a known state is subject to errors 
due the calculation process.  The definition of y is now 
changed to include errors in the both the measurement and 
the forward calculation.  One of the ramifications of this is 
that if one of these is known much more accurately than the 
other, then the largest error becomes the limiting factor.  In 
other words, the resources spent on the instrument and the 
forward calculation have to be kept in balance.  Getting one 
very accurate while ignoring the other provides no benefit.   
 
So far we have been considering a simple scalar problem 
and we could have used brightness temperatures.  But we 
want to assimilate radiances.  This presents some additional 
considerations.  
  
One is that radiances are averages of the values we want.  
Suppose I tell you I have a surface and its area is x and ask 
you to draw it.  You know something because you know 
the area, but you need some information about the shape.  
If I slice the object into slabs and give the area of the slabs, 
you can do better.  If I give you information about the 
smoothness or some other feature of the shape you can do 
even better.  The closest example is the problem of having 



a profile of layer temperatures.  You can never get a unique 
solution for the level temperatures. 
 
For soundings this means that the satellite measurements 
are never provide the complete information for a profile.  If 
a solution is attempted without a constraint, a ridiculous 
solution is obtained.  This comes about for 3 reasons 
 

1. As in the case of the layer temperatures for every 
profile, there a number of profiles with fine vertical 
structure that give the same answer.  One needs to 
know something to select the right one. 

 
2. The measurements are not independent.  This means 

the temperature for a given level contributes to the 
radiances for several channels.   

 
3. The measurements contain errors.  Suppose one 

channel has an error and the others are all perfect.  If 
the measurements are assumed to error free, a profile 
needs to be found that keeps the radiances for all the 
channels except the noisy one constant and changes 
the one for the noisy channel to satisfy the erroneous 
value.  Without the other channels, the noise would 
correspond to a small temperature change over levels 
contributing to that channel.  However, since the 
values for the other channels must be kept constant, 
the only way to do this is to make a large change for 
some of the levels.  Then since the other channels also 
see this level, other levels have to be changed to 
cancel the effect on the other channels.  The net effect 



of all this is to produce one of the noisy solutions that 
are possible because of condition 1. 

 
This means that some information in addition to the 
radiances is needed to produce a solution.  Examples are: 
 

1. a guess profile 
2. a constraint such as smoothness of the profile. 

 
The smoothness constraint will be left as an exercise.  But 
general approach is derived as follows.  Suppose we are 
retrieving the temperatures for a profile.  One of the values 
that might be used as an estimate for one layer is the 
temperature at a nearby layer.  When this is done, the value 
for a layer enters on one side of the equation for itself and 
on the other for other layers.  When the algebra is done, the 
equations for layers become connected. 
 
In any case, once a constraint is selected, it has to be 
applied in the right weights to produce a good solution.  
Using it either too strongly or too weakly is not optimal.  
This is what the retrieval process does. 
 
The second consideration is that the measurements are not 
temperatures or temperatures scaled to another unit, but 
rather the product of a sum of weighted temperatures with 
the weights being determined by the atmospheric 
transmittances.  Note that these weights are not the ones 
that we have been discussing earlier, but rather part of the 
units conversion factor.  The problem is that we have 



radiance and we want to get temperatures.  There are 
several ways to do this: 

1. convert radiances to brightness temperatures. 
a. but the transmittances become functions of 

temperature 
2. use the radiances in the retrieval and put the 

conversion in the retrieval system 
a. The conversion factors are then the elements 

of a Jacobian matrix 
 
 
This model has some implications.  Note that the weights 
are determined by the error. 
 
These equations have some implications.  Suppose we 
want to let the satellite measurements have  the 
maximum impact on a forecast model.   Below are some 
alternatives and their effects. 
 
1. Have a good guess.  This gives a good retrieval.  But 

if the guess is good, then why not just use it.  In fact a 
retrieval produced with a good guess will be pretty 
much independent of the measurements. 

2. Produce a retrieval based on a separate guess from the 
one used in the model.  Since the weight is 
determined by the combination of the errors in both 
measurements and the guess, the error used to 
determine the weights is increased and the 
measurements have less influence on the model than 
it would if only one guess were used. 



3. Produce a retrieval based on the same guess as the 
one used in the model.  This can be done if the error 
is counted correctly.  The trap is that exactly the same  
guess with exactly the same error enters twice with 
weights based on the assumption that there are two 
guess values with different errors that are 
independent.  Since the errors are absolutely identical, 
the errors are not weighted correctly if the weights are 
based on the assumption that they differ.  The errors 
have to be counted correctly. 

4. Directly assimilate the radiances.  This allows the 
maximum influence of the radiances on the forecast 
because only one guess is involved.  Step 3 can 
produce the same result with more work.  Remember 
the 3 laws of thermodynamics.  You can’t get 
something for nothing, you can’t break even, and you 
can’t even come close.  This is similar.  Doing better 
than assimilating the radiance based on a single 
background is like inventing a perpetual motion 
machine. 

 
If the solution is iterated it must de done right.  Some errors 
that have been made are: 

1. iterate the solution and use the result of the previous 
solution as the guess for the next iteration.  This has 
the effect increasing the weight given to the satellite 
measurements at each step.  When too much weight is 
given to the measurements, noise in the 
measurements and the forward calculation are 
amplified. 



2. Do a retrieval based on one guess and supply the 
retrieval to a model using a separate guess.  This has 
the effect of down weighting the effect of the 
measurements because weight is given to two guesses 
and part of the additional guess weight is taken from 
the measurement contribution. 

Solutions are iterated because the accuracy of the 
linearization step depends on the accuracy of the retrieval.  
The way to do the iteration is to  

1. use the same guess for the background each time. 
2. Iterate the state (profile) used to calculate the Jacobian       

 
 
The Penalty Function Approach 
 
Up till now, we have been working with a scalar model.  
Although one can get close to the final solution by analogy, 
there are a couple of little details that, at least so far, don’t 
make it to the exact solution.  So for matrices using the full 
solution, the usual penalty function approach is now given 
following Eyre 1991 as given in his 2002, ECMWF 
Meteorological Training Course Lecture Series.  The 
penalty function can be written as 
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differentiating with respect to x and denoting it by 
)(' xJ gives 
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where )(xK  is the Jacobian matrix containing the derivatives 
)(/}{ xdxdy . 

 
Integrating gives 
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and noting that for the linear case KxKxK b == )()( and 
substituting gives 
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An equivalent form which can be more stable and more 
efficient can be obtained using the matrix identity     
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To get  
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The difference is that in one case the matrix product that 
occurs in the inverse is singular by itself and the inverse is 
stable only because of the matrix that is added to it.  This is 
because one form has the number of channels as the inner 
dimension and the number of temperatures, water vapor 
amounts, etc. being retrieved as the outer dimension.  The 
second form has the dimensions reversed.    
 



Finally note the similarity between this retrieval and the 
older versions using brightness temperatures to convert 
from radiances to temperature 
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Note that A  takes the place of K  since the conversion from 
radiance to temperature is done in the Jacobian.  The newer 
Jacobian is simply a more accurate way to do the 
conversion.  In the form using weighting functions as A  , the 
weighting functions ignore the dependence of the 
weighting functions on the state vectors on the grounds that 
it is small compared to the change in brightness 
temperature.  While this assumption is true, it slows the 
convergence and can lead to a slightly different answer.  It 
was a good approximation in its day, but it is not a good 
approach to use now. 


