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Organizations That Have Contributed to AIRS

AIRS-AMSU-HSB

Atmospheric Infrared Sounder

Advanced Microwave Sounding Unit

Humidity Sounder for Brazil
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Overview of This Talk

• Introduction to regularization

– How the theory of remote sensing has evolved.

– What is the basis for the AIRS methodology.

∗ Cloud clearing philosophy in an integral component

∗ Minimization approach is optimized for hyper-spectral sounders.

• Details of the AIRS Science Team implementation.

– Justification for use of channel sub-sets.

– Justification for use of trapezoids.

– Justification for use of finite differences.

• Some post-launch issues

– Microwave side-lobe corrections

– Tuning versus Error Term Experiments

• A few details on the code & development system
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Need to Use “Snake-eyed Concentration

In the 1970 movie, Little
Big Man, the character Jack
Crabb learns from his sis-
ter than “it is possible to
shoot a gun before you touch
it; however, it takes light-
nin’ reflexes and considerable
snake-eyed concentration.”

In this context:
It is possible to understand the methodology

without understanding the details of the equations;
however, it still takes lightnin’ reflexes

and considerable snake-eyed concentration.
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Notation, a.k.a., How I Learned to Embrace my OCD

• I adopt a notation of linear algebra that denotes the dimensions and
row/column indices of the matrices. Yes, there is medication for this.

• For example, the kernel function, K, is a rank-2 matrix, K(n, L) where
n is a channel index and L is a parameter index (our pressure grid).

• I will write this matrix as Kn,L. Having explicit indices makes transposes,
KT

L,n, and inverses, K−1
L,n, more obvious.

• It is also useful when programming. Loop indices, n, i, j, k, L, m etc.
used in the FORTRAN code correspond to the matrix indices in the
theory documents. Obviously, I am now off the medication!

• In this notation an implied summation rule is imposed

yT
n · yn = C, a scalar

yn · yT
n = Cn,n, a rank 2 matrix

• I also use a superscript i to denote items that are iterated. The concept
of iteration evolves during the talk, so some items will begin without the
iteration superscript and then will have it later.

5



Least Squares (LSQ) Solution

• If we want to solve a linear system of equations of observations yn, where
n is number of channels using L geophysical parameters, XL, we could
write the relationship as

yn = Kn,L · XL (1.1)

• We can begin by weighting the equation, if desired

Wn,n · yn = Wn,n · Kn,L · XL (1.2)

• Then multiplying by, KT we obtain

KT
L,n · Wn,n · yn = KT

L,n · Wn,n · Kn,L · XL (1.3)

• And the solution is

XL =
[
KT

L,n · Wn,n · Kn,L

]−1 · KT
L,n · Wn,n · yn (1.4)

• Note that, XL = K−1
L,n · yn is the direct solution but for a non-square

matrix K−1 ≡ [KT · K]−1 · KT .
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Summary of Geophysical Products, XL

T (p) vertical temperature profile
q(p) vertical water vapor profile (≈ 8 g/kg @ surface)
L(p) vertical liquid water profile (f/ AMSU/HSB)
O3(p) vertical ozone profile (≈ 8 ppmv @ 6 mb)
Ts surface temperature
ε(ν) spectral surface emissivity, (e.g., 0.95 @ 800 cm−1)
ρ�(ν) spectral surface reflectivity of solar radiation
Pcld cloud top pressure for ≤ 2 cloud levels
αcld,fov cloud fraction for ≤ 2 cloud levels and 9 FOV’s

CO2 total column carbon dioxide (≈ 370 ppmv)
CH4(p) methane profile (≈ 1.65 ppmv)
CO(p) carbon monoxide profile (≈ 0.11 ppmv)

Ancillary Information Needed for Retrieval
Ps surface pressure (f/ AVN forecast)
θ satellite zenith angle
θ� solar zenith angle
εcld,ν ≡ 1 spectral cloud emissivity for ≤ 2 cloud levels
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The Cost Function

The idea of minimization of a cost function for the solution of linear equa-
tions dates back to Gauss (c. 1800). Most methods, include the AIRS
Science Team method, minimize a cost function of the form:

J = (fn (XL) − yn)
T · N−1

n,n · (fn (XL) − yn)

+
(
XL − X0

L

)T · HL,L · (
XL − X0

L

)
(1.5)

We find the solution of ∂J
∂XL

= 0. Since derivatives of the forward model

are a function of the parameters, this problem is inherently non-linear.
Therefore, we must iterate. For iteration=i the solution is given by

Ki
n,L ≡ ∂fn(XL)

∂XL

∣∣∣∣Xi
L

(1.6)

Xi+1
L = X0

L +

KT i

L,n · N−1
n,n · Ki

n,L + HL,L


−1 · KT i

L,n · N−1
n,n ·

[
yn − fn(X

i
L) + Ki

n,L

(
Xi

L − X0
L

)]
(1.7)

However, this form can also be derived using linear algebra (similar to Eqn.
1.4) or maximum likelihood (Bayesian probability density functions).
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Reminder, What is the Forward Model

• The non-scattering infrared forward model has components from the
surface (mostly linear), the reflected solar component (mostly linear),
a complicated, bet very small, down-welling term, and an atmospheric
term of the form of a Fredholm integral equation of the 1st kind:

fn(X
i
L) � ∫

ν
dν · Φ(ν, ν0(n)) · ∫

p
dp · Bν(T

i(p)) ·

∂ exp

− z(p)∫

z′=∞
∑
i
κi(ν, Xi

L, p, . . .)dz′



∂p
(1.8)

• The optical depth for a given gas (denoted by a subscript i), κi, is a com-
plex interacting function of all the parameters, Xi

L, such as temperature
T i(p), moisture, ozone, etc.

• Φ(ν, ν0(n)) is our instrument response function

• This equation can be highly non-linear for composition (i.e., moisture,
ozone, etc.) retrievals.
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Damping and the “Background Term”

• The matrix HL,L is a form of regularization

– Prevents inverse from being singular, i.e., it stabilizes the inverse.

– Xi+1 − Xi is smaller (i.e.,, damped) than the LSQ solution (see Eqn.
1.4), which I will denote as Xi+1(H = 0) in these notes.

• The radiances are modified by the right hand term, Ki
n,L

(
Xi

L − X0
L

)

– When H is non-zero, the part that wasn’t believed on the 1st iteration,
X1(H = 0) − X1, must be subtracted from the radiances.

– If this term is neglected then the part that wasn’t believed would
be introduced into subsequent iterations and the effect would be an
un-damped LSQ retrieval, Xi+1(H = 0).

– This is why, a physical retrieval cannot use the results from a previous
physical retrieval ⇒ RULE #1 of Iteration
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Heritage of Regularization Approaches

year authors method of regularization
1943 Levenberg Steepest Descent & Newtonian Iteration

1963 Marquart Hessian operator, H = ∆y · ∂2(yn−fn(XL))2

∂X2
L

1963 Twomey, Tikhonov H = λ · I , prevent singularities
≈ 1970 Twomey H minimizes vertical derivatives, e.g., ∂T/∂z

1970 Backus, Gilbert Compute Optimal Vertical Functions f/ sounding
1972 Conrath Trade-off: Vertical Resolution versus χ2 error

≈ 1970 Wark & Fleming Use H = co-variance as a constraint
1976 Rodgers Use a posteriori PDF’s as a constraint, H = S−1

a

1989 Eyre Formalization of forward model errors in N−1
n,n

1992 Hanel, Conrath Optimal functions/vertical resolution by SVD
1992 Hansen L-curve, finding optimal λ via SVD
1996 Phalippou For q(p), use relative humidity as a constraint
1997 Schimpf & Schreier Use of SVD to determine H
1999 Li use residuals to derive λ
2000 Peckham & Grippa Use lapse rate as a constraint
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Constraints on AIRS Science Team Algorithm

• Retrieval methodology must be able to handle cloud cleared radiances
(CCR’s)

– Random noise amplification, 1
3

≤ A <≈ 3

– Large spectrally correlated component

– Statistical a-priori difficult to implement

• Retrieval should have minimal sensitivity to first guess.

– Maximize contribution from instrument radiances.

– Maximize sensitivity to and understanding of climate signals

– Trade-off: model background states ⇒ to use or not to use.

• Retrieval should not artificially constrain problem.

– Minimize sensitivity to incorrect statistics, e.g., in frontal zones avoid
statistical damping.

– Trade-off: Stability versus Impact
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Cloud Clearing Methodology (Chapter 7 of rs notes.pdf)

This cloud clearing methodology has a long heritage starting from the
original papers (Smith, 1968, Chahine, 1974), Chahine, 1975, Chahine,
1977, Chahine et al. 1977, McMillin and Dean 1982, Smith et al. 1992,
Susskind, et al. 1998, Joiner and Rokker 2002, Susskind, et al. 2003. The
fundamental features of the AIRS cloud clearing algorithm are

• Use the J = 9 AIRS cloud scenes, Rn,j, without any a-priori constraint, such as
preferential grouping, to compute the extrapolation parameters, ηj.

R̂n =< Rn,j >j + (< Rn,j >j −Rn,j) · ηj (1.9)

• Determine the number of cloud formations and constrain the number of degrees of
freedom for solution of ηj to the number of cloud formations.

• Compute both CCR’s and error estimates for the CCR’s, δR̂nδR̂n, specifically taking
into account the noise amplification induced by the linear extrapolation and the spectrally
correlated component of the radiance error due to error covariance of the η’s, δηjδηT

j .

• Compare the clear state estimate with the AIRS retrieval products and reject cases that
violate any of the assumptions of cloud clearing.
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A non-Traditional Look at the Cost Function, 1/3

J =
(
fn

(
Xi

L

)
− yn

)T · N−1
n,n ·

(
fn

(
Xi

L

)
− yn

)

+
(
Xi

L − X0
L

)T · HL,L ·
(
Xi

L − X0
L

)
(1.10)

• We can compute the error in cloud cleared observations, δR̂nδR̂n very
well.

• We can estimate errors in the forward model. For parameters held con-
stant, Xb, the obs-calc error covariance is

N−1
n,n′ = Kn,b · δXbδXT

b′ · KT
b′n′ + δR̂nδR̂n (1.11)

• a-priori information enters the system through statistical estimates of
δXbδXT

b′

– In the sense of estimates of errors in X0
L

– In the sense of null space errors, the minimum allowed value of δXbδXT
b′

• But, we also compute the formal errors of the solution,
(
δXLδXT

L

)s
for

each retrieval step = s (details in Section 21.9 of rs notes.pdf).
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A non-Traditional Look at the Cost Function, 2/3

• (
δXLδXT

L

)s
from step = s becomes the

(
δXbδXT

b

)s+1
in step = s+1, e.g.,

we solve for T (p) and δT (p)δT (p)T and then use that error covariance
when we solve for q(p), O3(p), etc., in later steps.

• Therefore, an improvement in temperature errors, for example, can be
used to improve our moisture retrieval (vice a versa).

• This formulation also brings spectral correlation (i.e., a priori knowl-
edge via the forward calculation) into the solution via Kn,b(X

i
L) on a

case-by-case basis.

– Spectral correlation is a function of other state parameters. For exam-
ple, temperature lapse rate changes sensitivity of all the composition
derivatives.

– N equations of yn changed into N new equations: Nn,n′ · yn′.
– This is a powerful concept that when used properly

∗ allows separation of mixed signals, e.g., T (p) and CO2

∗ minimizes sensitivity to biases, e.g., surface effects (Tskin, Psurf, emissivity) in T (p)

retrieval.
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A non-Traditional Look at the Cost Function, 3/3

• We can compute H from information content of (KTN−1K) by singular value de-

composition (SVD, a.k.a. empirical orthogonal functions (EOF’s) see Section 21.3,

rs notes.pdf)

Λi
k,k ≡ UT i

k,L

[
KT i

L,n ·
(
Ns

n,n

)−1 · Ki
n,L

]
· Ui

L,k· (1.12)

• Λi
k,k is diagonal with elements equal to λk

• When λi
k 
 1 the terms are well determined. Ki

n,L · Ui
L,k are new Jacobians with very

high signal to noise: H = 0

• When λi
k → 0 the observations have no influence on the solution: H → ∞ and

components of Xi+1
L → X0

L

• When λi
k is small and significant we add a ∆λi

k (details in Section 21.4 of rs notes.pdf)

which is equivalent (see Section 21.8, rs notes.pdf) to adding a case dependent Hi

given by

Hs,i
L,L′ = Ui

L,k · ∆Λi
k,k · UT i

k,L (1.13)

• SVD determines the optimal fraction of the a priori information to use..

• We think this is more robust than using ensemble statistics of I cases to compute a

static a priori covariance Sa ≡ δXL,iδXT
i,L
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Overview of the AIRS Multi-spectral Physical Retrieval System

19
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The atmospheric state, Xs
L, and the error estimate of that state, δXs

L, are
used to minimize the residuals in observed minus computed radiances in
each retrieval step=s.
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It feels like this, eh?
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Philosophy of AIRS Team Algorithm

• Utilize microwave-only product (MIT maximum likelihood algorithm ⇒
T (p), q(p), Tskin) to estimate the infrared clear radiance estimate for
initial cloud clearing.

• Utilize eigenvector regression (NOAA/NESDIS) to provide the first guess
state for the physical algorithm. This solution contains the fine vertical
structure information based on ≈ 1600 AIRS channels..

• Utilize a physical retrieval (NOAA/GSFC) to improve the state.

1. Microwave and infrared observations are used in each step.

2. Use microwave observations and products to reject cases with poor cloud clearing.

– Reject if Obs-Calc of coupled retrieval is too large

– Perform microwave-only retrieval using coupled retrieval as first guess. Reject if ∆T (p) is too
large.

3. All observations are used at their native angles of observation and the forward model is computed
at the correct angles.

4. For cloud clearing we do perform a local angle correction of 1.1◦ with each 3 x 3 set of FOV’s
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Philosophy of AIRS Physical Algorithm

1. Embed an information content analysis into each step to determine the
optimal damping (regularization) for each case.

• Cloud cleared radiances are both case and iteration dependent.

• Propagate a formal geophysical error estimate through each step.

• Compute an estimate of the a-priori covariance at each step.

2. Take advantage of parameters that are separable (i.e., pay attention to
spectroscopy and radiative transfer features in our spectrum)

• For example, we can solve for Tsurf holding all other variables (e.g., water) constant,

since Tsurf is quite linear. Steps are denoted as a superscript s in my notes.

• BUT, if a step is repeated (e.g., when an error estimate has been improved) NEVER

use the products from the previous step.

3. Select channels that are “spectrally pure”, that is

• Have a high sensitivity to what is being solved for.

• Have a low sensitivity to the parameters held constant (i.e., keep our error estimates

small when separating variables)

4. Use optimal number of parameters for each retrieval step are determined
in simulation (Backus-Gilbert optimization) to speed up processing.
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Channels used in the AIRS retrieval algorithm
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Justification for Vertical and Spectral Functions

• A fine vertical grid is required for accurate computation of the absorption
coefficients, κi(ν, p(z), Xs,i, θ) and radiances.

• There are about 85 independent pieces of information in AIRS (2378
chl’s), IASI (8461 chl’s), and CrIS (1305 chl’s)

• Solving for 100 vertical levels of T(p), q(p), O3(p), CO(p), CH4(p), and
CO2(p) wastes time and can destabilize the retrieval.

• If we allowed 2378 emissivities, there would be nothing left to solve for.

• Functions, F s
L,j, and associated parameters, As,i

j , are chosen in a trade-off
between resolution and stability for each retrieval step. Analogous to
Backus & Gilbert (1970) trade-off. Also discussed in Hanel, (1992).

• Major issue for code execution time and improves stability.
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Formulation of Vertical and Spectral Functions

• Temperature functions are additive vertical trapezoids.

• Composition functions are multiplicative vertical trapezoids.

– Radiance kernel is ∝ exp(κ(Xs,i
L )),

– κ(Xs,i
L ), is the optical depth ∝ Xs,i

L .

– Therefore, composition variables are more linear in ln
(
Xs,i

L

)

– ∂ ln(Xs,i
L ) ∝ ∂X

s,i
L

X
s,i
L

which is a % change in Xs,i
L .

• Emissivity functions are additive spectral triangles.

• A scaling parameter Âs
j is used to create dimensionless parameters and

adjust scale between different functional groups (e.g., when mixing T(p),
q(p), and emissivity in one retrieval).

• The Jacobian, Ks,i
n,L, becomes a set of new derivatives, Ss,i

n,j, in which
groups of parameters in L space are grouped together in J space.

• Sub-sets (e.g., temperature) of vertical and spectral functions must sum

to unity: ∑
j

(
F s

L,j

)
= 1 for a group of functions.
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Example of functions, FL,j, for T (p(L)) retrieval
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Kernel Function replaced by Sensitivity Matrix

• For additive functions the S-matrix is given by

Ss,i
n,j ≡ ∂fn

(
Xs,i

L + F s
L,j · As

j

)

∂As
j

· ∆Âs
j (2.1)

� fn

(
Xs,i

L + F s
L,j · Âs

j

)
− fn

(
Xs,i

L

)
(2.2)

• For multiplicative functions the S-matrix is given by

Ss,i
n,j ≡ ∂fn

(
Xs,i

L ·
(
1 + F s

L,j · As
j

))

∂As
j

· ∆Âs
j (2.3)

� fn

(
Xs,i

L ·
(
1 + F s

L,j · Âs
j

))
− fn

(
Xs,i

L

)
(2.4)

• Analytic derivatives on the RT grid do not help our algorithm, δ function
perturbations are sub-optimal (Backus+Gilbert).

• Single sided finite difference is currently used, we will explore the benefit
of double-sided and dynamically scaled derivatives someday. This is not
our biggest error source!!!
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So . . . we really solve for dimensionless parameters

The minimization equation for both additive and multiplicative forms is
given by

∆As,i+1
j ≡ As,i+1

j − As,0
j

=




ST s,i

j,n


 ·

(
Ns

n,n

)−1 · Ss,i
n,j + Hs,i

j,j


−1

· ST s,i

j,n ·
(
Ns

n,n

)−1 ·
[
yn − fn(X

s,i
L ) + Ss,i

n,j

(
As,i

j − As,0
j

)]
(2.5)

And to return to parameter L space is done by combining the components
and dividing by the scaling factors, Âs

j.

∆Xs,i+1
L =

∑
j

F s
L,j ·

(
∆As,i+1

j · Ij,j · ∆Â−1s

j

)
Additive (2.6)

∆Xs,i+1
L =

∏
j

(
1 + F s

L,j

)
·

(
∆As,i+1

j · Ij,j · ∆Â−1s

j

)
Multiplicative (2.7)
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Finally, we regularize

• We perform the information content analysis on our new functions

Λs,i
k,k ≡ UT s,i

k,j ·

ST s,i

j,n ·
(
Ns

n,n

)−1 · Ss,i
n,j


 · Us,i

j,k (2.8)

• This transformation is equivalent to new Jacobians, Ss,i
n,j · Us,i

j,k

• We determine ∆λ as follows (see Section 21.8, rs notes.pdf)

∆λs,i
k = 0 for λs,i

k ≥ λs
c (2.9)

=
√
λs,i

k ·
(√

λs
c − λs,i

k

)
for λs,i

k < λs
c (2.10)

= ∞ for λs,i
k ≤ (0.05)2 · λs

c (2.11)
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And Solve for Our Parameters

• We solve for the new parameters

∆As,i+1
j = Us,i

j,k · ∆Bs,i+1
k (2.12)

∆Bs,i+1
k =




1

λs,i
k + ∆λs,i

k


 · UT s,i

k,j · ST s,i

j,n ·
(
Ns

n,n

)−1 ·
[
yn − fn(X

s,i
L ) + Ss,i

n,j

(
As,i

j − As,0
j

)]
(2.13)

• Note that the change in the parameters, ∆As,i+1
j associated with original

functions, F s
L,j is equivalent to a transformed parameter change, ∆Bs,i+1

k ,

associated with a new function Gs,i
L,k = F s

L,j · Us,i
j,k.

• It is illustrative to visualize the transformed functions.
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Example of SVD optimal T (p) Functions

For temperature functions, the new set of vertical functions, F s
L,j · Us,i

j,k are shown
for the AIRS temperature retrieval information content analysis. In this case, ten
functions of the 23 functions are determined to better than 5%.
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Example of SVD optimal q(p) Functions

For water functions, the new set of vertical functions, F s
L,j · Us,i

j,k are shown for the
AIRS temperature retrieval information content analysis. In this case, six functions
of the ten functions are determined to better than 5%.
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Example of SVD optimal O3(p) Functions

For ozone functions, the new set of vertical functions, F s
L,j · Us,i

j,k are shown for the
AIRS temperature retrieval information content analysis. In this case, three functions
of the seven functions are determined to better than 5%.
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Propagation of Formal Errors

• The uncertainty in ∆Bs,i+1
k

(
∆λs,i

k = 0
)

are uncorrelated and equal to
(
λs,i

k

)−1
2.

• The fraction of ∆Bs,i
k solved for is equal to φs,i

k = λs,i
k /

(
λs,i

k + ∆λs,i
k

)

• The propagated error in B space is the RSS of the transformed first
guess error, δBs,0, and the error from the radiances.

δBs,i+1
k =

√√√√√√√√√√
((

1 − φs,i
k

)
· δB0,s

k

)2
+


φ

s,i
k · 1√

λs,i
k



2

(2.14)

• In ∆A space the errors are correlated and can be computed from

(δAjδAj)
s,i+1 = Us,i

j,k ·
(
δBs,i

k

)2
UT s,i

k,j (2.15)

δAs,i+1(j) �
√√√√√∑

k
Us,i(j, k)2 · (δBs,i+1(k))

2
(2.16)
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Propagation of Formal Errors

• The errors in the geophysical products are computed in the root-sum-
squared (RSS) sense from parameter errors:

(
δXLδXT

L

)s,i+1
= F s

L,j · (δAjδAj)
s,i+1 · F T s

j,L (2.17)

δXs,i+1(L) �
√√√√√∑

j
δ (As,i(j))

2 · F s(j, L)2 (2.18)

• These error estimates can be used to compute
(
Ns

n,n

)−1
and, therefore,

propagated into the next retrieval step; however, in practice we only
keep the diagonal components of these errors.

• It is a bit more complicated than this, due to handling of null space
errors, ⇒ but I figure we have ALL had enough equations.
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Some Post-Launch Issues

Now we have the theory, we are ready to work with real data.
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Issues with AMSU’s Estimate of CLEAR State

• Microwave side-lobe corrections (SLC’s) for the Aqua platform are more
complex than the POES platforms and have NOT been applied to date.

• A large microwave tuning (empirical side-lobe correction) has been em-
ployed to mitigate SLC issues.

• A poor AMSU first guess has a negative impact on cloud clearing and,
therefore, all AIRS products.

• To understand the impact to AIRS products, we are using a model
analysis to increase our information content.

1. To assess the impact of AMSU SLC issues on the AIRS products.

2. To assess the need for tuning and/or RTA improvements.

• We are building the ability to bring in MODIS clear pixels co-located to
AIRS FOV’s to improve our QA & information content.
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TUNING and MODEL ERROR TERMS

For discussion, assume a retrieval equation looks like

∆Xs,i+1
j =


ST s,i

j,n′ ·
(
Ns

n′,n
)−1 · Ss,i

n,j + Hs,i
j,j


−1

· ST s,i

j,n′ ·
(
Ns

n′,n
)
−1

·
[
yn − fn(X

s,i
L ) + Ψs,i

n + T (n)
]

(2.19)

• Ss,i
n,j is the sensitivity of channel n to parameter As

j

• Ψs,i
n is the background term derived from a-priori contribution.

• T (n) is radiance tuning, if applied.

With real data we have other error sources, such as rapid transmittance
algorithm (RTA) and spectroscopy errors that we can write as En′,n.

Ns
n′,n = Ns

n′,n + En′,n (2.20)
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Example of RMS Statistics versus RAOB’s
32,000 co-located cases from Sep. 2002 to Sep. 2004

These figures provided by Murty Divakarla.
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Example of T(p) BIAS Statistics versus RAOB’s
32,000 co-located cases from Sep. 2002 to Sep. 2004

These figures provided by Murty Divakarla & Eric Maddy.
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Code Development

• There is one code for AIRS, IASI, and CrIS.

• The retrieval system code is a total of about 106,000 lines of FORTRAN
code.

• We have simulation capability (another 24,000 lines of code).

– Can perform instrument trade studies.

– Can study retrieval theory in simulation.

– Simulation can be built from models and/or from AIRS retrieval prod-
ucts.

• Scientific evaluation is built into the code.

– Each retrieval case can be compared to a reference state (AVN fore-
cast, ECMWF forecast, RAOB, or truth (in simulation)) at every
single iteration and step.

– Diagnostics exist in radiance space and geophysical space.

• There are over 100,000 lines of IDL code for display and analysis of
diagnostic output.
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Example of Diagnostic Capabilities
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