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1.  INTRODUCTION  

Surface broadband albedo is loosely defined as the ratio between upwelling and downwelling 
shortwave radiation (Liang 2004). It represents the reflectivity of a surface under the actual 
illuminating condition. To distinguish it from other types of albedo, this albedo is usually called 
apparent albedo or blue-sky albedo (Liang et al. 1999).Surface albedo is closely related to 
surface bi-directional reflectance, which usually changes with illuminating and viewing 
angles. Surface reflectance is an intrinsic characteristic of the Earth surface, including land 
surfaces, which are the focus of this study. It is strongly dependent on land cover type and 
varies both spatially and temporally. Surface reflectance is a function of surface parameters 
such as vegetation type and abundance, soil type and moisture and so on. Because surface 
reflectance changes spectrally and angularly, values of broadband albedo also change with 
spectral and angular distributions of incident solar radiation. Thus, in addition to surface 
properties, apparent albedo is also dependent on atmospheric conditions and solar zenith 
angle (SZA). To simplify the dependency of albedo on SZA and atmosphere, two conceptual 
terms of albedo, white-sky and black-sky albedo, are frequently used (Lucht et al. 2000). 
 
Historically, parameterizations of LSA were used in land and climate models, whereby LSA 
was computed as functions of land and atmospheric variables, such as land surface type, 
leaf area index, and SZA (Bonan et al. 2002). The spatial and temporal variability of LSA 
cannot be well captured by such simplified approaches. Spatially, land cover and land use 
determine the overall distribution pattern of LSA (Zhang et al. 2010). Temporally, many 
factors contribute to intra- and inter-annual variability of LSA. For example, LSA changes 
seasonally with vegetation phenology (Moody et al. 2005), seasonal snow (Kuusinen et al. 
2012), and shift of SZA (Wang et al. 2005). Long-term changes in land surface features, such 
as from alteration of land use and land cover (Loarie et al. 2011), vegetation dynamics 
(Loranty et al. 2011), and changes in soil moisture (Zhu et al. 2011), will lead to inter-annual 
variations in LSA. Meanwhile, changes in LSA also feed back to climate. For instance, both 
models and observations suggest that a positive feedback exists between LSA and 
precipitation at regional scale (Eltahir 1998; Zheng and Eltahir 1998). Thus, long-term 
records of LSA are an irreplaceable resource for monitoring the variability of LSA and 
understanding its interaction with the climate system. 
 
Remote sensing is a unique tool for mapping LSA globally on a regular basis. Attempts to 
generate global maps of LSA can be traced back to the early meteorological satellite Nimbus 
3 (Raschke et al. 1973). Since then, a series of optical sensors have been applied to derive 
global data on LSA (Csiszar and Gutman 1999; Li and Garand 1994). The launch of the 
Moderate Resolution Imaging Spectroradiometer (MODIS) began a new era of monitoring 
LSA with satellites (Townshend and Justice 2002). The higher spatial resolution, better 
spectral configuration, and improved radiometric and geographic accuracy of MODIS 
facilitate a high-quality global albedo product at 8-day frequency (Schaaf et al. 2002). As its 
successor, the Visible Infrared Imaging Radiometer Suite (VIIRS) from the Suomi National 



NOAA  
    VIIRS Surface Albedo Algorithm Theoretical Basis Document  

  Page 9 of 55 
 
 

 

Polar-orbiting Partnership (Suomi NPP) and Joint Polar Satellite System (JPSS) missions 
will furnish us with a continued opportunity to monitor LSA from space. 
 

1.1.  Product Overview 

1.1.1.  Product Description 

The Interface Data Processing Segment (IDPS) VIIRS land surface albedo data is part of the 
VIIRS surface albedo Environmental Data Record (EDR). Although reliable albedo estimates 
have been reported for the valid pixels with clear-sky VIIRS observations, the current VIIRS 
granule albedo product suffers from several issues: (1) albedo values are only retrieved for 
clear-sky pixels and the product has a considerable number of data gaps; (2) the current 
algorithm estimates albedo from a single VIIRS observation and contains a certain extent of 
noise; (3) the albedo of the current product is an instantaneous value; (4) the sea-ice albedo 
retrieval failed. 
 
To address these issues, we developed a two-step approach to produce a new daily granule 
and gap-filled product based on VIIRS data, which is implemented in the NDE framework. 
This NDE LSA product is a granule-based product, containing albedo parameter over land 
and sea-ice surfaces. A direct estimation algorithm was developed to estimate daily mean 
blue-sky albedo from clear-sky VIIRS observations over land pixels. The direct estimation 
algorithm uses TOA spectral reflectance data [known as VIIRS Sensor Data Record (SDR)] 
of nine VIIRS bands (M1, M2, M3, M4, M5, M7, M8, M10, and M11) as major inputs. A VIIRS 
cloud mask Intermediate Product (IP) helps to exclude cloudy-sky pixels. Land cover data, 
VIIRS ice concentration EDR, and snow mask EDR were used to determine the LUT type 
deployed on each pixel. There are four land type specified LUTs included in the algorithm: 
General, Desert, Snow, and Sea-ice. The VIIRS albedo granule data have been validated 
using field measurements. The accuracy is comparable to existing satellite albedo products. 
 
The NDE LSA process consists of two components. The granule albedo is estimated online 
from a combination of the directly estimated albedo and a historical temporally filtered gap-
free albedo; the historical albedo is derived offline using granule albedo previously obtained. 
The online direct estimation approach, which has been widely used for estimating land 
surface albedo from a variety of satellite data, is initially used to estimate daily mean blue-
sky land surface albedo from clear-sky VIIRS data of TOA spectral reflectance. The offline 
statistical temporal filter is then applied to combine information from the albedo retrieved with 
observations of the current day (if existing) and the adjacent days as well as historical 
climatology to generate a gap-free and noise-reduced albedo data set. 
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1.1.2.  Product Requirements 

The requirements for the VIIRS NDE Surface Albedo are described in the Section 5.4.1 in 
JPSS Level 1 Requirements Supplement. (Refer to 
http://www.jpss.noaa.gov/technical_documents.html) 

1.2.  Satellite Instrument Description 

The Surface Albedo uses data from Visible Infrared Imaging Radiometer Suite (VIIRS) 
instrument as input to the algorithm. The VIIRS instrument is a component of the Suomi 
National Polar-orbiting Partnership (NPP) satellite and of the Joint Polar Satellite System 
(JPSS) satellites. NPP was launched on 28 October 2011, and JPSS-1 (NOAA-20) was 
launched on November 18, 2017. JPSS is the latest generation of U.S. polar-orbiting 
environmental satellites, which cross the equator about 14 times daily in the afternoon orbit, 
providing full global coverage twice a day. 
 
The VIIRS sensor was designed to improve the series of measurements initiated by the 
Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS). VIIRS data is used to measure cloud and aerosol properties, 
land surface parameters including albedo. VIIRS data also servers to improve studies in 
global climate change. 
 
The VIIRS instrument is a ‘whiskbroom’ radiometer, which collects radiometric and imagery 
data in 22 bands from 0.4 to 12.5 µm. Five of these channels are high-resolution imagery 
bands (I-bands), and sixteen are designed as moderate-resolution bands (M-bands). One of 
these M-bands is the Day/Night band (DNB), which is a panchromatic band sensitive to 
visible and near-infrared wavelengths. For further details please refer to the VIIRS Sensor 
Data Record (SDR) User’s Guide (NOAA Technical Report NESDIS 142). 
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2. ALGORITHM DESCRIPTION 

The implementation of this new gridded VIIRS albedo product consists of two major steps: 
direct retrieval and temporal filtering. The direct retrieval procedure is granule-driven and 
employs the improved direct estimation algorithm to generate daily mean albedo granule 
from VIIRS clear-sky SDR data. The albedo granule directly retrieved from the first step will 
then be gridded and converted to a sinusoidal map projection. The gridded data will serve as 
the input of the temporal filtering step. The temporal filtering process is tile-driven and 
executed at the end of each day, which mainly implements a statistical temporal filter 
algorithm to combine albedo from the current and temporally neighboring days and 
climatology information to generate a gap-filled and noise-reduced albedo product. 
 

2.1.  Processing Outline 

The direct retrieval and temporal filtering algorithms are implemented into two separate 
modules in the software development. The online processing part employs the direct retrieval 
algorithm to generate Primary Surface Albedo (“VIIRS_Albedo_IP”) from VIIRS clear-sky 
observations (Figure 2-1). Data gaps in the clear-sky albedo granule are then filled using the 
historical albedo information, which come from the temporal filtering algorithm (the offline 
processing part). The gap-filled albedo granule is also known as Improved Surface Albedo 
(“VIIRS_Albedo_EDR”). 
 
The offline processing part mainly implemented the temporal filtering algorithm with the 
albedo tiles gridded from Primary Surface Albedo during a 9-day window (precedent 8 days 
plus the current day) as the main input (Figure 2-2). The offline processing updates the 
historical albedo data that are used in the online processing part. 
 
The input and output data of the online and offline processing parts will be summarized in 
the following section. 
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Figure 2-1. Software architecture for the online processing part. 

 

 
Figure 2-2. Software architecture for the offline processing part. 
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2.2.  Algorithm Input  

The online and offline parts use different input and output and are described separately. The 
required inputs for the online processing of NDE Surface Albedo algorithm unit are listed in 
Table 2-1, while that of the offline processing is listed in Table 2-2. 
Table 2-1. Inputs required by the online processing of the NDE surface albedo algorithm unit 

Input Data Source Description 

VIIRS SDR NDE 
VIIRS gap-filled and converted M band 
SDR data (M1, M2, M3, M4, M5, M7, M8, 
M10, and M11) 

VIIRS Geolocation NDE VIIRS terrain corrected geolocation data 
Surface Type NDE Surface type mask at 1km resolution 

VIIRS Cloud Mask NDE Cloud Mask produced by the Enterprise 
cloud mask algorithm 

VIIRS Snow Mask NDE Snow Mask produced by the Enterprise 
Snow cover algorithm 

VIIRS Ice Concentration NDE Ice Mask produced by the Enterprise Ice 
Concentration algorithm 

Historical Surface Albedo Tiles NDE Filtered surface albedo tiles from (day-2) 
offline processing 

Albedo Regression Coefficient 
LUT DAP 

Regression coefficients in multiangular 
bins linking TOA reflectance to albedo for 
various surfaces (General, Desert, Snow, 
Sea-ice) 

 
Table 2-2. Inputs required by the offline processing of the NDE surface albedo algorithm unit 

Input Data Source Description 

VIIRS Surface Albedo IP NDE Current daytime (day+0) VIIRS Surface 
Albedo IP produced from online processing 

VIIRS Geolocation NDE VIIRS terrain corrected geolocation data 

Albedo Climatology DAP Prior knowledge of time-series surface 
albedo for offline filtering algorithm 

 

2.3.  Theoretical Description 

The algorithm consists of two major steps: direct retrieval and temporal filtering. The direct 
retrieval procedure is granule-driven and employs the improved direct estimation algorithm 
to generate daily mean albedo granule from VIIRS clear-sky SDR data. The albedo granule 
directly retrieved from the first step will then be gridded and converted to a sinusoidal map 
projection. The gridded data will serve as the input of the temporal filtering step. The temporal 
filtering process is tile-driven and executed at the end of each day, which mainly implements 
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a statistical temporal filter algorithm to combine albedo from the current and temporally 
neighboring days and climatology information to generate a gap-filled and noise-reduced 
albedo product. 

2.3.1 Direct Estimation Approach 

Land surface albedo and sea-ice surface albedo are retrieved with different approaches. 
Their theoretical basis is discussed separately here. 
 
2.3.1.1 Land Surface Albedo 
 
The direct estimation method seeks to directly retrieve daily albedo over land surfaces from 
VIIRS observations (TOA reflectance) through modeling the relationship between surface 
albedo and TOA reflectance (Wang et al. 2017). Instead of leaving the integration process of 
surface incident radiation and albedo to the end user, the direct estimation method pre-
calculates the integral values of daily mean albedo for various cases of atmospheric and 
surface conditions by modeling the atmospheric radiative transfer with a comprehensive 
database of atmospheric and surface parameters as inputs. Representative datasets of daily 
albedo and TOA reflectance are generated from the model simulation and used to train the 
regression models. These models will then be applied to VIIRS data to retrieve daily albedo. 
The direct estimation method includes the temporally explicit integration in the process of 
model construction so that end users of surface radiation budget can directly use products 
of daily albedo without the need to carry out complex computations on their own. 
 
Two software packages, MODTRAN5 (Berk et al. 2004) and 6S (Kotchenova et al. 2008), 
were used to model atmospheric radiative transfer. The 6S software was mainly used for 
simulating TOA reflectance with consideration of surface BRDF. Direct and diffuse downward 
shortwave radiations under various SZA and atmospheric conditions were simulated by 
MODTRAN5. Because albedo is only retrieved from clear-sky observations, variations of 
aerosol are the major consideration for atmospheric parameters. Four aerosol types 
(including continental, urban, desert, and biomass burning aerosol) with nine optical depths 
(0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, and 0.6) were used as parameters for radiative 
transfer models. 
 
Regarding the inputs of surface reflectance, two schemas (BRDF and Lambertian) were 
tested in this study. In theory, a database of spectral BRDF and broadband albedo is ideal 
for such studies. However, the corresponding data of broadband albedo for the spectral 
BRDF are usually calculated from narrowband albedo using empirical narrow-to-broadband 
conversion coefficients (Liang 2001). Insufficient spectral information in the BRDF database 
can be a source of uncertainties in estimating daily values of broadband albedo. In contrast, 
the library of surface spectra contains complete spectral information, though it does not 
consider the anisotropy of surface reflectance. To compare the relative importance of 
spectral and angular information for estimating daily albedo, we used both the surface BRDF 
database and surface spectra library as inputs for radiative transfer simulations. The BRDF 
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data were obtained from the MODIS BRDF product and converted to VIIRS bands (Wang et 
al. 2013). The spectra library was derived from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) (Baldridge et al. 2009) and the U.S. Geological Survey 
(USGS) (Clark 2007) surface spectra database. 
 
With atmospheric and surface inputs available, simulating TOA reflectance using the 6S 
model for various viewing geometries is a straightforward process. An interval of 5° was used 
for view zenith angle (VZA) and SZA. Relative azimuth angle (RAA) increased in 10° 
intervals, although a smaller interval (5°) was used for cases near the principal plane (±20°). 
The rest of this section mainly focuses on simulation of daily albedo. 
 
The diurnal trajectory of incident diffuse and direct solar radiation is needed for computing 
daily albedo from white-sky albedo and instantaneous black-sky albedo. For clear-sky days, 
the incident solar radiation and its diffuse partition are mainly dependent on aerosol and SZA. 
Changes of incident diffuse and direct solar radiation are simulated by MODTRAN5 and 
stored in a lookup table (LUT) for future use. In the current algorithm, the aerosol parameters 
are assumed to remain unchanged for the period of one day. It should be noted that aerosol 
loadings as well as cloud coverage will hardly stay constant during a day, which is a source 
of uncertainty in estimating daily albedo from one single satellite observation. Trajectory of 
SZA during one day can easily be calculated from time of day using the following equation: 

     (1)  
where is latitude, is the declination angle of the Earth, and t is the local time. The 
declination angle can be calculated from day of year (DOY) as: 

       (2) 
With Eqs. (1) and (2), SZA can be calculated for 30-min intervals for a given DOY and 

latitude. At these time points , incident diffuse radiation and direct radiation 

 is obtained by interpolating the pre-stored LUT of solar radiation. White-sky and 
black-sky albedo can both be easily calculated from BRDF kernel parameters with pre-
integrated coefficients (Schaaf et al. 2002). Examples of diurnal changes of black-, white-, 
and blue-sky albedo for three surface types are illustrated in Figure 2-3. 
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Figure 2-3. Examples of diurnal curves of black-, white- and blue-sky albedo values for 

three surface types. 
 
From the discrete form of Eq. (5), daily mean albedo can be calculated as follows: 

      (3) 
Thus, a daily mean value of surface broadband blue-sky albedo can be calculated for one 
case of surface reflectance, aerosol, latitude, and day of year. Together with the TOA spectral 
reflectance simulated earlier, the training data to model daily albedo from TOA spectral 
reflectance are now complete. The training data were binned by viewing geometry, latitude, 
and declination angle. For each bin, a group of daily albedo together with its corresponding 
TOA reflectance for various combinations of atmospheric (aerosol type and loadings) and 
surface (BRDF or surface spectra) conditions were paired. These parameters were used as 
independent and dependent variables of linear regression models to derive the coefficients 
of the regression models.  
 
2.3.1.2 Sea-ice Surface Albedo 
Sea-ice albedo values records the “instantaneous albedo” which is more suitable for granule 
albedo product. The BRDF-based direct estimation method for sea-ice surface albedo is to 
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develop a linear regression relationship between multispectral TOA reflectance and 
broadband sea-ice albedo.  

𝛼𝛼(𝜃𝜃𝑠𝑠) = 𝑐𝑐0(𝜃𝜃𝑠𝑠,𝜃𝜃𝑣𝑣,𝜑𝜑𝑠𝑠) + ∑ 𝑐𝑐𝑖𝑖𝑏𝑏 (𝜃𝜃𝑠𝑠,𝜃𝜃𝑣𝑣,𝜑𝜑𝑠𝑠)𝜌𝜌𝑖𝑖(𝜃𝜃𝑠𝑠,𝜃𝜃𝑣𝑣,𝜑𝜑𝑠𝑠)                                 (4) 
where 𝛼𝛼(𝜃𝜃𝑠𝑠) is the broadband blue-sky albedo; 𝜃𝜃𝑠𝑠 is the SZA; 𝜃𝜃𝑣𝑣 is the VZA; and 𝜑𝜑𝑠𝑠 is the 
RAA. i (1,2,3,4,5,7,8,10,11) represent the 9 VIIRS moderate resolution bands used in sea-
ice albedo retrieval. 𝜌𝜌𝑖𝑖 is the TOA reflectance from Sensor Data Records (SDRs). 𝑐𝑐0 and 𝑐𝑐𝑖𝑖 
are the retrieval coefficients; 𝑐𝑐0 is the constant term. The coefficients are stored in a pre-
defined Look Up Table (LUT) for evenly spaced angular bins in SZA, VZA, and RAA. 
The instantaneous albedo retrieved from single-date/angular observations is capable of 
grasping the surface dynamic change. The pre-defined LUT trained from the representative 
data set renders the algorithm highly efficient and accurate. The algorithm will get the 
coefficients for an actual (𝜃𝜃𝑠𝑠,𝜃𝜃𝑣𝑣,𝜑𝜑𝑠𝑠)  combination through linear interpolation in the 
surrounding angular bin, which runs fast in operational practices and avoids the discontinuity 
in neighboring albedo values. The LUT configuration covers SZA from 0° to 80° with an 
increment of 2°, VZA from 0° to 64° with an increment of 2°; and RAA from 0° to 180° with 
an increment of 5°.  
The direct retrieval algorithm is designed to work over any sea-ice scenario. The strategy is 
to build a sea-ice BRDF database to represent different snow/ice types and various ice-
seawater mixed situations. The BRDF database is the basis to derive TOA reflectance and 
broadband albedo respectively. This database can be retrieved from satellite data for land 
surface pixels but has to be simulated from physical models for sea-ice pixels due to the lack 
of clear and low-SZA satellite observations in polar regions.  
The potential components of a sea-ice pixel include snow, ice, pond, and seawater. Then 
two key problems should be addressed, which are the modeling of component BRDFs and 
the composition into sea-ice BRDF. Here the BRDFs of snow/ice component are simulated 
using the asymptotic radiative transfer (ART) model, with the input of Inherent Optical 
Properties (IOPs) calculated from a variety of snow/ice physical parameters (Stamnes et al. 
2011). For ocean water, each BRDF is a linear combination of its three components (sun 
glint, whitecaps, and water-leaving reflectance from just beneath the air-water interface) 
(Feng et al. 2016). The pond BRDF simulation in VSIA LUT deploys the analytical model 
proposed by Zege et al. (2015) with the optical characteristic values referred to by Morassutti 
et al. (1996).  
Sea-ice BRDF is considered as the linear mixing of the components’ BRDFs. The fractions 
of different components in sea-ice pixels vary through time, thus the inherent heterogeneity 
of sea-ice BRDF should be considered in the simulation process. The Monte Carlo simulation 
method is used to generate samples of fractions in assembling the sea-ice BRDF for 
efficiency. The fraction of the first three components is determined by a uniform random 
number within [0,1] and the fractions of four components sum to 1 in each BRDF item.  
We generated a sea-ice BRDF dataset consisting of 120,000 simulated sea-ice BRDF items. 
The next key step is to generate the surface albedos. For each sea-ice BRDF item, the 
surface broadband albedo, including the Black Sky Albedos (BSAs) and White Sky Albedo 
(WSA), are derived through an angular integration and narrowband-to-broadband 
conversion. Another method to achieve the sea-ice albedos is by aggregating the BSAs and 
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WSA of each component using the simulated fractions. Its convenience embodies in the 
direct acquisition of snow/ice/seawater albedo from their BRDF models. The results of the 
two methods are consistent. 
The direct estimation algorithm was to directly infer surface albedo from TOA reflectance. 
Another key step is to simulate the TOA reflectance and diffuse skylight factor in each angular 
bin from sea-ice BRDF through atmospheric simulation using the 6S (Second Simulation of 
the Satellite Signal in the Solar Spectrum) tool. To eliminate the uncertainty resulting from 
atmospheric effects, multiple possible atmospheric conditions have been considered in the 
training data setup. Sea ice is mainly distributed in Arctic, Southern Ocean, and Antarctic sea 
ice. The possible atmospheric influence in these regions can be represented in 6S using 
three predefined atmospheric models including Sub-Arctic Winter (SAW), Mid-Latitude 
Winter (MLW) and Sub-Arctic Summer (SAS), while the typical aerosol types can be 
described using Rural and Maritime (Vermote et al. 1997). In practice, the atmospheric 
parameters are pre-calculated and stored in an atmospheric LUT. We transferred the surface 
reflectance spectra under each atmospheric condition type, which is the combination of an 
aerosol model and an atmospheric model. Then the number of simulated TOA spectra is 
much expanded than that of the surface BRDF spectra.  
For the convenience of users, our retrieval object parameter was set as blue-sky albedo, 
which is defined as the ratio of up-welling radiation fluxes to down-welling radiation fluxes in 
a given wavelength range and is comparable with the in-situ albedo observations. The blue-
sky albedo is estimated using a linear relationship of black-sky albedo (directional-
hemispherical surface reflectance) and the white-sky albedo (bi-hemispherical surface 
reflectance). The diffuse skylight factor has been recorded in the atmospheric simulation and 
is used to combine the BSA and WSA into blue-sky albedo (Gardner and Sharp 2010) as the 
regulatory factor (2). 

𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑠𝑠𝑠𝑠𝑠𝑠 = (1 − 𝛽𝛽)𝛼𝛼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽𝛽𝛽𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝑠𝑠𝑠𝑠𝑠𝑠                               (5)  
It is assumed that the BRDF dataset is representative to all possible sea-ice pixels in the 
polar region. Based on the calculation results above, we built linear relationships between 
TOA reflectance and surface blue-sky broadband albedo for different solar/viewing angular 
bins using a least squares method. The assumption is that the regression relationship in each 
angular bin is applicable to various sea-ice surface types with a minimum overall square error 
over the BRDF database. The regressed coefficients form the sea-ice albedo LUT. 

2.3.2 Temporal Filtering 

The temporal filtering algorithm is adapted from the statistical temporal filter (SFT) originally 
developed for the Global LAnd Surface Satellite (GLASS) albedo product (Liu et al. 2013a). 
SFT takes advantage of albedo climatology and temporal correlation among albedo 

retrievals. A linear equation is used to depict the correlation between albedo kα  on day k and 

albedo kk ∆+α on its neighboring day kk ∆+ : 
kkkkkk eba ∆∆∆+∆ ++= αα      (6) 
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where, ka∆  and kb∆ are regression coefficients and ke∆  is the random error following 

Gaussian distribution with variance 
2
k∆η . To obtain an estimate of albedo kα̂ at current day k, 

SFT seeks to combine information from albedo retrievals kk ∆+α  within a temporal window and 
albedo climatology in a statistically optimal way: 

c
a

baKk

Kk kkkkk

kkkk

k

k
k /)(ˆ

2222 ∑
+=∆

−=∆ ∆+∆+∆

∆∆+∆

+
+

+=
ης

α
σ
µα

      (7)  

∑
+=∆

−=∆ ∆+∆+∆ +
+=

Kk

Kk kkkkkk a
c 2222

11
ηςσ        (8) 

where kµ  is the mean and 
2
kσ  is the variance of albedo at day k from climatology, and 

2ς is 
the variance of albedo retrieval error. 
 
The GLASS STF approach derives albedo climatology from Moderate Resolution Imaging 
Spectroradiometer (MODIS) albedo products [MCD43, Collection 5 (C5)]. For the locations 
covered with seasonal snow, the mean and variance of the albedo around the snow starting 
and ending days tend to be underestimated because the MODIS C5 albedo product typically 
ignores discrete snow days during ephemeral snow periods. To obtain improved snow 
climatology, we incorporate snow cover and albedo data from MOD10A1 data. MOD10A1 
data of daily snow coverage from 2003 to 2013 are used to determine snow seasons for each 
pixel. For the snow-free seasons, albedo mean and variance are calculated from MCD43 
albedo data. For the snow seasons, albedo climatology is derived from MOD10A and MCD43 
data. The MOD10A product is used to calculate the percentage of snow-covered days and 
snow-free days. The albedo of snow-covered days is obtained from MOD10A1 data. The 
albedo mean and variance of the first day of snow-free seasons that are derived from MCD43 
are used to generate samplings of snow-free background albedo for the snow-covered 
seasons. The generated snow-free albedo and the snow-covered albedo from MOD10A are 
then used to derive snow-covered climatology for the snow-covered seasons. 
 

2.3.3 Sensitivity Analysis 

2.3.3.1 Partial Cloud Coverage 
 
The presented retrieval approach requires cloud-free VIIRS observations as input. We relied 
on the VIIRS cloud mask product to exclude cloud-covered pixels. The current VIIRS cloud 
mask data have an 8% omission error and a 4% commission error (Vermote et al. 2014). The 
detection of partial cloudy pixels is even more difficult because of their similar spectral 
signature to clear pixels. Here, we investigated the effects of undetected partial cloud 
coverage on accuracy of retrieving daily albedo using the simulated data. The TOA 
reflectance and surface fluxes of partially cloudy pixels were calculated as a combination of 
clear-sky simulation and cloudy-sky simulation according to the percentage of cloud 
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coverage. Regression coefficients to derive clear-sky daily albedo were applied to the 
simulated TOA reflectance to estimate daily albedo for the partially cloudy cases. The 
calculated daily albedo was then compared with the simulated albedo. The simulation uses 
a surface spectra library of 245 records covering various surface type and SZA=30˚ as input. 
Figure 2-7 shows cloud coverage led to an overestimation of daily albedo. The magnitude of 
positive bias and retrieval errors is dependent on the percentage of cloud coverage and cloud 
optical depth (COD). Even for thin clouds (COD = 5), partial cloud coverage of 20% causes 
a positive bias of 0.022 and an RMSE of 0.025. For thick clouds (COD = 120), a small portion 
(3%) of cloud within a pixel will generate an error with a similar magnitude. This sensitivity 
analysis stresses the importance of high-quality cloud mask products for retrieving daily 
albedo. Actually, the effects of undetected clouds on retrieving daily albedo are more 
complicated than the above simulation. Our simulation-based sensitivity analysis did not 
consider the diurnal dynamics of cloud coverage and properties, and it did not account for 
the impact of cloud shadows either. 
 

 
Figure 2-7. Impacts of cloud coverage on errors of retrieving daily albedo. 

 
2.3.3.2 Aerosol Type 
 
A single type of aerosol was typically used in previous studies of directly estimating land 
surface albedo (e.g., He et al. 2014; Liang 2003). Although four aerosol types were 
considered by Wang et al. (2013), a group of generic regression coefficients was derived in 
their study by combining data from all aerosol types. The authors failed to further analyze the 
impact of aerosol type on bias and errors in retrieving surface albedo. Here, we designed 
four different LUTs using training data from each of the four aerosol types. We also created 
a generic LUT using training data from all four aerosol types. The various LUTs were applied 
to simulated TOA reflectance data with different aerosol types to estimate daily albedo. The 
estimated results were then compared with the simulated values of daily albedo to assess 
errors caused by use of incorrect aerosol types (Figure 2-8). Zero bias and smaller errors 
occurred when the aerosol type used for the training data was the same as for the 
comparison data. When coefficients derived from continental aerosol were applied to the 
data of other aerosol types, a systematic overestimation or underestimation was produced. 
For biomass burning aerosol, a small positive bias (<0.01) exists. Desert aerosol has a 
slightly larger positive bias. For the urban aerosol type, values of daily albedo are 
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underestimated with a large bias >0.015. Due to the existence of a large bias in the urban 
aerosol results, urban aerosol cases will result in substantial retrieval errors of greater than 
0.03. For all cases, a general trend of increase in bias and RMSE exists when VZA increases. 
The use of the generic LUT generated slightly better results than use of the continental LUT 
for all the aerosol types except the continental aerosol. For the continental aerosol, the 
retrieval quality was slightly worse, especially in terms of RMSE. We can conclude that an 
aerosol-specific LUT is preferred to obtain higher accuracy when accurate information about 
aerosol type is available. Otherwise, a generic LUT should be used instead. 

 

a) Continental LUT 

 

b) Generic LUT 

Figure 2-8. Impacts of aerosol types on errors of retrieving daily albedo. 
 
2.3.3.3 Surface Type 
 
Similarly, we also studied the impact of surface types on albedo retrievals, which were usually 
overlooked by previous studies. For example, Qu et al. (2014) categorized surface into three 
groups and applied surface-specific LUTs to each surface type. However, the authors did not 
analyze the influence of errors in information about the surface type on retrieval accuracy. In 
this study, a generic LUT trained with data for all surface types was applied to cases of 
various surface types. The generic LUT performed very well for vegetated surfaces with an 
ignorable bias and small RMSE (Figure 2-9). However, this generic LUT will generate 
substantial biases for snow and desert surfaces. Especially for desert cases, the 
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overestimation can be as high as 0.02. The generic LUT will underestimate daily albedo for 
snow cases. Although the absolute value of the bias of snow is smaller than that of desert, 
the RMSE of snow is much higher than that of desert. This is mainly caused by the overall 
greater magnitude of snow albedo. To reduce the retrieval errors for snow and desert 
surfaces, we developed two surface-specific LUTs. According to the sensitivity analysis of 
aerosol type, the desert aerosol model was used for the desert LUT. Unsurprisingly, LUTs 
specific to surface type generate albedo with much smaller RMSE. The reduction in RMSE 
is especially manifest for the desert surfaces. With the snow LUT, errors in retrieving snow 
albedo are still >0.02, which nevertheless represents a reduction of 0.015. These results 
highlight the importance of accurate information on surface type so that a surface-specific 
LUT can be selected. 

 

a) All surface types 

 

b) Desert 
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c) Snow 

Figure 2-9. Impacts of surface types on errors of retrieving daily albedo. 
 
2.2.3.4 Diurnal Variations of Atmospheric and Surface Conditions 
 
To facility the computation of daily albedo, this study assumes that the atmospheric and 
surface conditions will not change during a day or at least that the atmospheric and surface 
conditions of the satellite overpass time can represent their daily variations. As a matter of 
fact, atmospheric parameters are dynamic, and factors such as cloud cover (Tian et al. 2004), 
perceptible water(Radhakrishna et al. 2015), aerosol type and loadings (Arola et al. 2013) 
can vary dramatically during a period of day. These factors may affect values of daily blue-
sky albedo by changing magnitude and spectral distribution of downward shortwave 
irradiance and its diffuse portion. Similarly, surface reflectivity may also change within a 
period of day. For instance, events such as snow melting, soil freezing and thaw all affect 
surface reflectance and its directionality.  
 
While it fails to handle the actual diurnal variations of atmospheric parameters and surface 
conditions, the presented method mainly considers the effects of SZA on daily albedo and 
shortwave radiation budget. A previous study on TOA albedo suggested that the diurnal 
variability of TOA albedo can be largely explained by its dependency on SZA (2014). The 
validation results presented here demonstrates that daily values of surface albedo can be 
estimated with improved accuracy after incorporating solar angle effects. 
 
Here, we studied the effects of daily aerosol variability on albedo retrieval using the field 
measurements of aerosol and surface shortwave irradiance. Figure 2-10a plots a typical daily 
curve of aerosol optical depth (AOD) over the Bondville station. The AOD value at the equator 
crossing time (ECT) of VIIRS (13:30) is represented by the red dot. AOD varies from 0.037 
to 0.075 for the day, and the standard deviation is as large as 0.006 (10% of mean). We 
simulated the daily changes of surface downward shortwave radiation using the actual daily 
AOD values and a constant AOD of the VIIRS ECT. The simulated results suggest such 
aerosol variations have little impacts on total downward shortwave radiation (Figure 2-10b) 
and ratio of diffuse radiation (Figure 2-10c). As a result, the daily mean albedos calculated 
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from the two inputs of aerosol have a relative difference smaller than 1%. However, it should 
be noted the sensitivity study here used limited data. Aerosol is a very dynamic factor with 
substantial spatial and temporal variability (Holben et al. 2001). Further study is needed to 
better understand the impacts of aerosol and other atmospheric or surface parameters on 
retrieving daily albedo. 
 

 

 
Figure 2-10. Typical diurnal variations of a) aerosol, b) downward shortwave radiation, c) 

diffuse ratio and d) blue-sky albedo for a typical clear day over Bondville. 
 

2.4.  Algorithm Output  

The online and offline parts use different output and are described separately. The required 
outputs for the online processing of NDE Surface Albedo algorithm unit are listed in Table 2-
3, while that of the offline processing is listed in Table 2-4. 
 

Table 2-3. Outputs of the online processing of the NDE surface albedo algorithm unit 
Output Data Description 

VIIRS_Albedo_EDR VIIRS Improved Surface Albedo EDR 

DataQualityFlag 
(DQF) 

VIIRS Surface Albedo 2-bit High-level Data 
Quality Flag 

ProductQualityInform
ation (PQI) 

VIIRS Surface Albedo 2-byte Product Quality 
Information 

AlbScl VIIRS LSA Albedo Scale Factor 
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AlbOff VIIRS LSA Albedo Offset 
Latitude Latitude 
Longitude Longitude 
Metadata Variables Details in metadata list in ATBD 

*In the table, AlbScl, AlbOff and Metadata Variables are single values; others are data array. 
 

Table 2-4. Outputs of the offline processing of the NDE surface albedo algorithm unit 
Output Data Description 

VIIRS Filtered Surface Albedo 
Tiles 

Gridded and temporal-filtered VIIRS 
Surface Albedo product.  
Input data for (day+2) online VIIRS 
Surface Albedo processing added to the 
historical Tile DB 

Data Quality Flag (DQF) VIIRS Surface Albedo 2-bit High-level 
Data Quality Flag 

Product Quality Information 
(PQI) 

VIIRS Surface Albedo 1-byte Product 
Quality Information 

 

2.5.  Performance Estimates 

The algorithm has been tested with the actual VIIRS data as input at the global scale over 
various seasons. The test results have been examined and analyzed. Field measurements 
of surface albedo and existing satellite albedo products were used to quantitatively assess 
the VIIRS test results. 

2.5.1.  Test Data Description 

Field measurements at Surface Radiation Budget Network (SURFRAD) and Greenland 
Climate Network (GC-Net) sites were used to validate the presented method (Table 2-5). 
SURFRAD has provided high-quality measurements of surface radiative fluxes since the 
early 1990s. Five out of seven SURFRAD stations are covered with seasonal snow and 
provide us with an ideal data source to assess the performance of our algorithm for 
ephemeral snow cases. The continuous nature of the data makes it suitable for evaluating 
the surface radiation budget over different seasons. The sum of the downward direct and 
diffuse radiation separately measured by two instruments was used as total downward 
radiation because it is more accurate than global downward radiation directly measured using 
a single pyranometer (Wang et al. 2013). Daily mean albedo was then calculated as the ratio 
between the sum of the daily upward shortwave radiation and the sum of the daily downward 
shortwave radiation. Daily values were generated only for days when half of the daytime 
measurements are valid. 
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The MODIS albedo product has been extensively validated over a wide range of land cover 
types by numerous independent investigations (e.g., Cescatti et al. 2012). Two versions of 
MODIS albedo data will be used in this study: Collection 5 (C5) and Collection 6 (C6). The 
MODIS C5 and earlier algorithms use MODIS surface reflectance within a 16-day window as 
input to fit a kernel-driven bidirectional reflectance distribution function (BRDF) model 
(Schaaf et al. 2002). The C5 algorithm cannot accurately estimate albedo for ephemeral 
snow events because of the rapidly changing surface reflectance during such events. The 
MODIS C5 albedo product is generated every 8 days. The MODIS C6 algorithm produces 
daily albedo estimates and enhances its capability in handling unstable surfaces by 
emphasizing the contributions of observations from the current day and separating snow-
covered observations and snow-free observations within the composite window. In this study, 
we used C5 and C6 versions of MCD43A1 BRDF data. Daily mean blue-sky albedo was 
calculated from the MODIS BRDF parameters and MODIS aerosol product with 
consideration of daily changes in SZA. Many previous validation studies have focused on 
MODIS albedo retrievals over snow-free or stable snow surfaces. The capability of predicting 
a gap-free albedo field, particularly for ephemeral snow events, is typically overlooked. In this 
study, we will compare gap-filled VIIRS and MODIS data and assess their application in 
studying surface radiation budget.  
 

Table 2-5. List of field measurement stations used for validating VIIRS albedo retrievals. 
Site Latitude Longitude Surface type Network 
Fort  Peck, MT 48.31 -105.10 Grassland SURFRAD 
Bondville, IL 40.05 -88.37 Agriculture SURFRAD 
Goodwin Creek, MS 34.25 -89.87 Forest/Pasture SURFRAD 
Penn State, PA 40.72 -77.93 Cropland SURFRAD 
Sioux Falls, SD 43.73 -96.62 Grassland SURFRAD 
Boulder, CO 40.13 -105.24 Grassland SURFRAD 
Desert Rock, NV 36.63 -116.02 Desert SURFRAD 
GITS 77.14 -61.04 Snow GC-Net 
Humboldt 78.53 -56.83 Snow GC-Net 
Summit 72.58 -38.51 Snow GC-Net 
DYE-2 66.48 -46.28 Snow GC-Net 
Saddle 66.00 -44.50 Snow GC-Net 
South Dome 63.15 -44.82 Snow GC-Net 
NASA-SE 66.48 -42.50 Snow GC-Net 
NEEM 77.50 -50.87 Snow GC-Net 

 
GLASS albedo is a long-term global product of surface albedo, which has been available 
from 1981 to the present (Liang et al. 2013; Liu et al. 2013b). MODIS data have been the 
main data source used to generate the product from 2000 (Qu et al. 2014), and AVHRR was 
used before the MODIS era. In addition to land surface albedo, the GLASS albedo Phase-2 
product includes albedo values over ocean and sea-ice surfaces (Qu et al. 2016). The 
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GLASS land surface albedo algorithm is also a direct estimation method. Albedo is initially 
retrieved from each clear-sky satellite observation. Albedo retrievals from a rolling window of 
16 days are then averaged to generate an intermediate albedo product at an interval of 8 
days. A statistical temporal filter (SFT) is applied to the intermediate product to fill data gaps 
caused by persistent cloud coverage and to reduce retrieval noise (Liu et al. 2013a). GLASS 
albedo V04, the latest version, was used in this study. GLASS albedo values are black-sky 
and white-sky instantaneous albedo corresponding to local noon time. The difference 
between local noon albedo and daily mean albedo will be ignored when we compare GLASS 
albedo with VIIRS albedo. 

2.5.2.  Results Analysis 

Figure 2-11 shows the global maps of VIIRS land surface albedo on July 17, 2015, obtained 
using the direct retrieval and temporal filtering processes. The granule files obtained from the 
direct retrieval process were gridded for illustration and comparison. Due to cloud coverage, 
the VIIRS direct retrieval results contain numerous missing values. In addition, there are no 
valid retrievals over the entire Antarctica because of the absence of solar radiation during the 
polar night. The granule-based data structure and missing values make it difficult to directly 
use the granule data products. The temporal filtering process generates a continuous map 
over all land pixels. Even over the polar night area of Antarctica, pixels are filled with 
climatological information. For comparison, the MODIS map of daily mean albedo is also 
generated from the MODIS C6 BRDF product. Although the VIIRS and MODIS maps show 
similar spatial patterns, it should be noted that the MODIS map still contains filling values 
even though the data from a 16-day window are used. Gaps in the MODIS data are 
particularly prominent at the Intertropical Convergence Zone (ITCZ) and the Asian monsoon 
area where clear-sky observations are limited. 
 

 

 

a) b) 

c) 



NOAA  
    VIIRS Surface Albedo Algorithm Theoretical Basis Document  

  Page 28 of 55 
 
 

 

Figure 2-11. Global maps of VIIRS land surface albedo on Jul 17, 2015, produced by direct 
retrieval (a) and after temporal filtering (b). A map of the MODIS C6 albedo product (c) is 

also shown for comparison. 
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2.5.2.1 Validating Land Surface Albedo 
 
Snow-free Results 
 
All valid clear-sky retrievals of daily albedo were compared with corresponding SURFRAD 
measurements (Figure 2-12). The two datasets generally show good agreement with an R2 
of 0.839, a negligible underestimation, and an overall RMSE of 0.056. The accuracy is 
comparable to previous results for retrieving instantaneous albedo (Wang et al. 2013). 
Compared to the data retrieved with BRDF LUT, the results for Lambertian LUT are slightly 
worse. Together with the following results for the GC-Net stations, we will discuss the pros 
and cons of incorporating surface anisotropy in estimating daily albedo. For both BRDF and 
Lambertian results, larger discrepancies are mainly observed for the snow-covered cases. 
Due to a mixture of snow and vegetation, even the relatively homogenous SURFRAD sites 
will have less spatial representativeness for snow-covered albedo. To reduce errors caused 
by partial snow coverage, we used the data for permanent snow cover from GC-Net stations 
to assess the quality of snow albedo retrievals.  

 
Figure 2-12. Comparison results between VIIRS-retrieved daily albedo and that measured 

at SURFRAD sites. All available data are used. 
 
The direct estimation method uses one single observation to retrieve daily albedo. In nature, 
such retrievals will reflect internal and external effects such as intra-daily variations due to 
subpixel clouds and shadows as well as differences in atmospheric conditions and viewing 
geometry. To reduce the impacts of these factors, we calculated 16-day averaged values of 
daily albedo and compared them with field measurements for snow-free days (day of year 
121–272, Figure 2-13). The 16-day averaged retrievals generally show improved quality. The 
RMSE from BRDF LUT is as small as 0.018. This accuracy is even higher than what we 
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previously obtained for instantaneous albedo (Wang et al. 2013), mainly due to the use of 
aerosol-specific LUT for the desert cases. 

 
Figure 2-13. Comparison results between VIIRS-retrieved daily albedo and that measured 

at SURFRAD sites. Only snow-free data are used. 
 
2.5.2.2 Snow-covered Results 
 
Uncertainties of snow albedo are generally larger, especially for cases with long oblique view 
path or large SZA values. Scatterplots of snow albedo retrievals were made by excluding far 
off-nadir observations (SZA >55° or VZA >30°) with three different LUTs (Figure 2-14). It is 
interesting to note that the Lambertian LUT generates the best results with the smallest 
RMSE. Correlations between retrieved daily albedo and measured daily albedo are similar 
amongst the three LUTs, and the generic BRDF LUT has a slightly higher R2. However, due 
to the existence of a non-identity slope, the generic BRDF LUT underestimates daily mean 
albedo with the largest bias of 0.047. The snow-specific BRDF LUT reduces the bias, but the 
non-identity slope still exists. It implies that BRDF information used in training the models 
has uncertainties and is not able to sufficiently duplicate the actual angular distribution of 
snow reflectance. With such inaccurate information about snow BRDF, the BRDF version of 
LUT fails to outperform the model with the Lambertian assumption. The Lambertian LUT was 
trained with surface spectra where complete information about surface spectral reflectance 
was available and nine VIIRS bands were used to derive the model. The BRDF LUT obtains 
the spectral BRDF information from the MODIS BRDF database. To reduce the correlation 
among bands, only one of the three blue bands were used in the BRDF model construction 
(Wang et al. 2013). In addition, the broadband albedo of the BRDF data was empirically 
converted from the narrowband albedo and the narrow-to-broadband conversion may have 
caused additional uncertainties. 
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Figure 2-14. Comparison results between VIIRS-retrieved daily albedo and that measured 

at GC-Net sites. Data shown here are limited to SZA<55° and VZA<30°. 
 
Ideally, a database of full spectrum BRDF is the best candidate to train the model. However, 
data availability determines the tradeoff between spectral and angular information. The 
optimal choice is dependent on many factors such as the anisotropy of the surface 
reflectance, the reliability of spectral BRDF information, and the uncertainties in narrow-to-
broadband conversion. Results shown in Figure 2-13 clearly suggest that BRDF information 
will generate less scattering, smaller errors, and higher accuracy for non-snow surfaces. Data 
from spectral BRDF rather than surface spectra should be used in model construction for 
snow-free cases. On the other hand, results for snow-covered surfaces (Figure 2-14) 
demonstrate that surface spectra may result in higher accuracy than spectral BRDF, at least 
when BRDF information contains a large degree of uncertainty. 
 
Results for retrievals from SURFRAD and GC-Net stations were combined to evaluate the 
overall quality of daily mean albedo (Figure 2-15). The results for GC-Net surfaces are based 
on the Lambertian LUT and limited to near-nadir observations (SZA >55° and VZA >30°). 
The overall accuracy of retrieving daily albedo has a bias of 0.003 and RMSE of 0.055. Large 
discrepancies exist over snow cases, particularly seasonal snow at the SURFRAD stations. 
In addition to the complexity of snow albedo, which will be discussed in the following section, 
the use of a single observation in retrieving daily albedo will also lead to some level of random 
errors. After excluding the seasonal snow results from the SURFRAD stations, the validation 
results of 16-day mean albedo are improved to R2 of 0.996 and RMSE of 0.024 (Figure 2-
16).  
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Figure 2-15. Validation results of VIIRS-retrieved daily albedo by combing data from 
SURFRAD and GC-Net stations. GC-Net data are limited to SZA<55° and VZA<30°. 

 
Figure 2-16. Validation results of 16-day averaged daily albedo. Snow-free albedo retrieved 

with BRDF LUT and snow albedo from Lambertian LUT. 
 
Assessing Effects of Temporal Filtering 
 
We also quantitatively compared the VIIRS daily mean albedo product before and after 
temporal filtering with the daily mean albedo calculated from the MODIS C6 BRDF product 
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(Figure 2-17). Although these products are generated from different satellite data and based 
on different retrieval algorithms, the VIIRS albedo data after temporal filtering are remarkably 
consistent with the MODIS albedo data, with a coefficient of determination of 0.94, bias of 
0.013, and an RMSE of 0.035. The comparison between the VIIRS albedo before filtering 
and the MODIS data displays considerably greater scattering. The larger discrepancies are 
mainly attributable to two factors: (1) the VIIRS albedo before filtering is retrieved from a 
single observation and contains some random noise; (2) the original VIIRS albedo suffers 
from the contamination of undetected clouds, and this phenomenon is prominent around 
MODIS albedo values of 0.1 where the VIIRS albedo has a rather dynamic range. The 
substantial improvement obtained following temporal filtering indicates that the temporal 
filtering procedure not only fills data gaps but also improves albedo estimates over pixels 
with valid retrievals.  

 
Figure 2-17. Comparison of the VIIRS albedo produced by direct retrieval (left) and after 

temporal filtering (right) with the MODIS albedo data. 
 
The effects of the statistical temporal filter in filling data gaps and reducing retrieval errors 
can be better illustrated by an example of time series data. Figure 2-18 shows VIIRS albedo 
in 2013 over Fort Peck before and after temporal filtering. The albedo data from MODIS and 
field measurements are also displayed for comparison. Fort Peck with a latitude of 48.31°N 
is typical of sites covered with seasonal snow. All the four albedo values estimated from 
VIIRS or MODIS data are relatively consistent with values for snow-free dark surfaces. 
However, only the VIIRS data after temporal filtering can provide a gap-free continuous time 
series. The filtered VIIRS data agree well with field measurements, capturing most of the 
major snowfall and snow melting events. The temporal filter filled the data gaps resulting 
from cloud coverage and also reduced the fluctuations in albedo retrievals for stable surfaces 
during the snow-free growing seasons. However, we also noticed that the temporally filtered 
VIIRS results are dependent on the frequency and quality of clear-sky albedo input from the 
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direct retrieval process. For the last 30 days of the year, the site was continuously covered 
with clouds and there were few clear-sky observations available. Neither C5 nor C6 versions 
of MODIS albedo products have valid retrievals for this period. The temporally filtered VIIRS 
estimates also suffered from issues of large uncertainties because of the spurious retrieval 
of Day 355 from the direct retrieval process. 

 
Figure 2-18. Land surface albedo for the year 2013 at Fort Peck obtained from field 
measurements, VIIRS direct retrieval and temporal filtering, and MODIS C5 and C6 

products. 
 
To quantify the effects of the statistical temporal filter on albedo estimates, we evaluated the 
VIIRS albedo results before and after temporal filtering for clear-sky days that have valid 
VIIRS albedo directly retrieved (Figure 2-19). The improvement over the snow-covered cases 
is marginal. A slight reduction in bias was observed, and the RMSE decreased by only 0.003 
(<2%). It is easy to understand that climatology and neighboring observations make limited 
contributions because surface albedo changes dramatically from day to day for ephemeral 
snow events. There was, however, a notable improvement over stable surfaces. The RMSE 
of snow-free albedo is reduced by 13% from 0.039 to 0.034 after temporal filtering. The 
surface albedo in non-snow seasons is relatively stable and incorporation of historical and 
neighboring observations reduces random errors resulting from the use of single 
observations. 
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Figure 2-19. Validation results of VIIRS albedo for clear-sky days from the direct retrieval 
and temporal filtering processes. 

 
To evaluate the overall quality of temporally filtered VIIRS albedo data, the gap-filled VIIRS 
daily albedo retrievals for all-sky conditions were compared with field measurements at all 
the stations (Figure 2-20). The red circles in Figure 5 represent the results for clear-sky days 
with valid VIIRS direct retrievals. The black text summarizes the statistics obtained by 
assessing all data and the red text represents the statistics for clear-sky data only. The results 
for days with clear-sky observations are comparable with those obtained using existing 
products, with an RMSE of 0.062 and a slight negative bias of -0.003. The filled data for 
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cloudy-sky during snow seasons still contain large uncertainties, which result in a 
degradation of overall statistics. At the daily temporal scale, the RMSE for all-sky data is 
0.094. It should be noted that the large errors are mainly caused by cloudy-sky days during 
ephemeral snow events, when surface albedo varies substantially from day to day. Under 
such circumstances, there is a large variance in albedo values estimated from neighboring 
retrievals and climatology. 

 
Figure 2-20. Validation of the temporally filtered VIIRS daily albedo for clear-sky and 

cloudy-sky days. Data of clear-sky days with valid temporally filtered VIIRS albedo are 
marked by red circles. 

 
Fortunately, the uncertainties of temporally aggregated albedo data will be significantly 
smaller. Figure 2-21 compares the temporally filtered VIIRS albedo data averaged over 16-
day windows at 8-day intervals, which is similar to the temporal composite strategy of the 
MODIS C5 and GLASS albedo algorithms. For the 16-day mean VIIRS results after temporal 
filtering, RMSE is reduced to 0.059. The correlation with field data is also improved and R2 
increases to 0.793. The validation results of the 16-day mean albedo calculated from MODIS 
and GLASS products are also shown. To make a valid comparison, gaps in the MODIS and 
GLASS results were also filled using a linear interpolation approach. The MODIS C5 albedo 
results tend to underestimate the albedo of ephemeral snow cases because one set of BRDF 
kernel parameters is retrieved for a 16-day window. The improved C6 algorithm, which 
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emphasizes the contributions of observations from the current day and takes into account 
changes in snow cover during the 16-day composite window, shows substantial improvement 
and generates results with higher R2 and smaller RMSE and bias. The GLASS albedo has 
an R2 value of 0.693, RMSE of 0.076, and bias of -0.036. The underestimation of GLASS 
albedo can be partially attributed to the use of the local noon albedo in comparisons because 
the GLASS product does not contain daily mean values, nor does it provide BRDF 
parameters that allow us to calculate the mean. The GLASS results are inferior to those of 
MODIS C6 but superior to those of MODIS C5. Nevertheless, our comparison suggests that 
the VIIRS results after temporal filtering have the highest quality.  

 
Figure 2-21. Comparison of the16-day mean albedo from VIIRS albedo data after temporal 

filtering, gap-filled MODIS C5 and C6 data, and GLASS albedo data. 
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To better compare with MODIS albedo products, we also use MODIS quality control (QC) 
information to select only the high-quality MODIS albedo data. For MODIS C5 data, the 
“BRDF_Albedo_Quality” of the MCD43A2 file corresponding to each MCD43A1 file is used 
and only good-quality data are used (Figure 2-22). The MODIS results from the high-quality 
retrievals are greatly improved compared with those shown in Figure 2-21. All MODIS data 
were used and missing data were interpolated to provide continuity in Figure 6. The RMSE 
was reduced by more than 50% from 0.107 to 0.049. The results indicate that by applying 
QC, we can improve product performance, albeit with a significantly reduced availability of 
valid products. Even after applying the QC information, there remain cases with large 
uncertainties, which are caused by the unstable surface conditions that occur during snow 
seasons. This indicates that the single-bit information of BRDF_Albedo_Quality cannot 
exclude all the data with low quality. For MODIS C6 data, the 
“Mandatory_Quality_shortwave” of the MCD43A1 file is used and only good-quality data are 
used for comparison (Figure 2-23). The results were limited to snow-free cases because 
good-quality data is required. The RMSE values of both the VIIRS and MODIS results were 
accordingly markedly reduced. The VIIRS results are slightly better than those of MODIS, 
with a 10% smaller RMSE. It is interesting that both results have one case of substantial 
underestimation, where SUFRAD shows a high value of snow albedo. This data point 
represents the data of day 363 at Boulder. Given the heterogeneity of the site, the 
underestimate can probably be attributed to the scaling effects of snow cover. 

 
Figure 2-22. Comparison of the 16-day mean albedo from temporally filtered VIIRS data 

and high-quality MODIS C5 data. 
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Figure 2-23. Comparison of the daily albedo from temporally filtered VIIRS data and high-

quality MODIS C6 data. 
 
2.5.2.2 Validating Sea-ice Surface Albedo 
 
The GC-Net ground shortwave albedo values were calculated from the ratio of upwelling to 
downwelling shortwave radiation measurements. Considering the diurnal variation of surface 
albedo due to SZA and atmospheric conditions, we narrowed the comparison on the data 
collected at local noon from 11:30 am to 12:30 pm (13:30 pm to 14:30 pm in UTC). The VIIRS 
sea-ice albedo represents the instantaneous clear-sky-albedo of earth surface. Thus the 
satellite retrievals can be directly compared with the in situ measurements. Only clear sky 
observations account for the accuracy assessment. 
 
More than five years of VIIRS and the GC-Net station data over Greenland area have been 
processed and compared to the calculated albedo results. Figure 2-24 shows the scatterplot 
between clear-sky-albedo calculated from GC-Net and surface measurements using the 
available data since January 2012. 
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 Figure 2-24. Scatter plots of Albedos derived from VIIRS sea-ice LUT vs. Albedos 

estimated from GC-Net stations. Datasets are stratified for each site. Different colors are 
used for marking the data pairs of different sites.   

 
There are three data pairs, apparently below the 1:1 line, that demonstrates an 
underestimation of VIIRS albedo product. We found all of them are collected from an identical 
site (PetermanELA) on neighboring days. Figure 2-25 shows the surrounding albedo maps 
and the dates, in which the center pixel covers the site position. It is shown that there is an 
apparent albedo contrast close to the site which causes apparent heterogeneity. Therefore, 
the high discrepancy at these data pairs is possibly caused by the surface heterogeneity and 
geometric error (Baker et al., 2011; Peng et al., 2015). 

 
Figure 2-25. VIIRS albedo map around the PetermanELA site. The gray color illustrates the 

albedo value.   
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For each GC-Net site, overall accuracy, precision, and uncertainty are estimated by calculating the 
mean albedo difference, the standard deviation of VIIRS estimated albedo and the RMSE (Root Mean 
Square Error) between VIIRS albedo and GC-Net albedo. The calculation results are summarized in 
Table 2-6.  
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Table 2-6. Validation results at each GC-Net station 
Site No. Site Name No. of match-up Bias RMSE 

2* CrawfordPt1 25 -0.0571 0.0907 

4* GITS 43 0.0661 0.0796 

5 Humboldt 53 0.023 0.0409 

6* Summit 71 0.0732 0.0798 

7 Tunu-N 47 0.0131 0.0382 

8* DYE-2 61 -0.0062 0.0363 

9 JAR1 55 0.0186 0.0605 

10* Saddle 58 -0.0072 0.0474 

11*˙ SouthDome 42 -0.0327 0.0989 

12* NASA-E 78 0.0998 0.1066 

15 NASA-SE 97 0.041 0.0636 

22*˙ PetermanELA 46 -0.0353 0.1052 

23 NEEM 52 0.0395 0.0583 
 
It is seen that the exact accuracy and precision values are different from site to site. 
Nevertheless, the absolute value of overall accuracy is 0.027 with a precision of 0.066, while 
the precision of GC-Net observations is around 0.05 (Steffen et al.,1996). The result indicates 
that the sea-ice LUT is efficient to retrieve the albedo of ice/snow surface. The overall Root 
Mean Square Error is 0.072 for all sites, which reflects the spread of the retrieved albedo.  
 
The hypothesis test was conducted at 5% significance level. (1) Assuming the match-ups 
represent the accuracy of the VIIRS sea-ice albedo, the acceptance interval of the VIIRS 
sea-ice albedo bias is (0.023, 0.031) from a t-test. (2) The site-specific hypothesis test on 
bias demonstrates the existence of local bias at some sites (marked with “*” in Table 2). (3) 
Meanwhile, the site-specific hypothesis test on the variance of the error shows only two sites 
(marked with “˙” in Table 2) has significant different precision from the whole sample. The 
other sites have the statistically constant precision of 0.066. The local bias and precision are 
relevant to the surround heterogeneity and in situ measurement quality at each site. 
 
Due to the high latitude of the Greenland region, the SZA corresponding to the observations 
are distributed from 40˚ to 82˚ peaked at around 50˚~55˚. The bias between VIIRS albedo 
and GC-Net observations slightly increases with SZA shown in Figure 2-26. 
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Figure 2-26. The distribution of SZAs of the data pairs (up) and Variation of Albedo 

discrepancy along with SZA. 

2.6.  Practical Considerations 

2.6.1 Numerical Computation Considerations 

Accurate retrieval of albedo requires reliable acquisition of atmospheric parameters. Forward 
running of atmospheric radiative transfer model is time-consuming and not suitable for 
operational retrieval of albedo. Instead, the LSA algorithm pre-runs the atmospheric radiative 
transfer at some given conditions and stores the parameters into the LUTs to save 
computational time. 
 

2.6.2 Programming and Procedural Considerations 

The LSA algorithm includes two major steps: direct retrieval and temporal filtering. The 
temporal filter part needs time series of historical LSA retrievals as input. The direct retrieval 
procedure is granule-driven and executed for each daytime granule. The temporal filtering 
process is tile-driven and executed at the end of each day.  
 

2.6.3 Quality Assessment and Diagnostics 

 
2.6.3.1 Quality flag 
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There are two quality flag arrays available with the EDR product. In which, Product Quality 
Information (PQI) flags are provided for the data quality information, and Data  Quality Flag (DQF)  
flag is provided for the product monitoring purpose. 

(a) Product Quality Information flags   

 
Table 2-7.  Product Quality Information (PQI) 

Byte Bit Flag Source Description 
0 0-1 Overall quality LSA 00: high-quality retrieval, 01: retrieval, 

10:no retrieval 
2-3 Cloud condition Cloud 

mask 
00=confidently clear, 01=probably 
clear,10=probably cloudy,11=confidently 
cloudy 

4 SDR quality SDR 0 = normal , 1 = bad data 

5 Solar zenith 
angle flag 

SDR 0: favorable SZA, 1: very large SZA (>60) 

6 View zenith 
angle flag 

SDR 0: favorable VZA, 1: very large VZA 
(>60) 

7 Spare 
  

1 0-2 Retrieval Path LSA 000: generic, 001: desert, 010: snow, 011: 
sea-ice, 100: no retrieval 

3-4 Temporal filter 
quality flag 

LSA 00: high-quality retrieval, 01: degraded 
retrieval, 10:no retrieval 

5 Online filter 
flag 

Online 
filter 

0: no filter, 1: filtered 

6-7 Spare 
  

 

(b) Data Quality Flag  
Bit Position     7   6   5   4   3   2   1   0    

Byte Bit Flag Source Description 
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0 0-1 Overall 
quality 

LSA 00: high-quality retrieval, 01: retrieval, 
10:no retrieval 

  

Table 2-8. Quality flag for offline VIIRS albedo 

(a) Data Quality Flag (DQF) 

Byte Bit Flag Source Description 

0 0 Overall quality Temporal 
filter 0: with retrieval, 1: no retrieval 

(b) Product Quality Information (PQI) 

Byte Bit Flag Source Description 

0 

0 Overall quality Temporal 
filter 0: with retrieval, 1: no retrieval 

1 Snow season Climatology 0=not in snow season, 1=in snow season 

2 
High quality 
retrieval from 
current day 

LSA 0=with high quality retrieval, 1=no high quality 
retrieval 

3-4 
Number of 
valid retrievals 
in window 

LSA 00: 0, 01: 1, 10:2-4, 11:>4 

5 
Quality of 
climatology 
data 

Climatology 0: with high quality climatology data , 1:no high 
quality climatology data 

6 SeaIce Flag LSA 0: not sea-ice surface; 1: sea-ice surface 

7 Reserved   

 
* Note:  The left-most bit is the most significant bit (the high-order bit) in the definition and description 
of above PQI and DQF in online/offline albedo. 
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We designed quality flags for both online and offline LSA algorithm. The quality flags are 
contained in two layers, Product Quality Information (PQI). Product Control Flags (DQF). The 
DQF is the concise version for PQI. 
 
2.6.3.2 Metadata list 
 
A series of metadata items were designed to monitor the VIIRS LSA quality. The metadata 
items are statistics at granule level for online output and at tile level for offline output, which 
are stored in the netcdf files as variables. 
 
Table 2-9. Metadata list for online VIIRS albedo 
 

Metadata Items Description 

OvQltyHghQltyRtr Number of High Quality Retrieval 

OvQltyRtr Number of medium Quality Retrieval 

OvQltyNoRtr Number of Invalid Retrieval 

CldConfClr Number of Confidently Clear Pixels 

CldProbClr Number of Probably Clear Pixels 

CldProbCld Number of Probably Cloudly Pixels 

CldConfCld Number of Confidently Cloudy Pixels 

RtrPthGen Number of generic pixels 

RtrPthDst Number of desert pixels 

RtrPthSnw Number of snow pixels 

RtrPthSI Number of sea-ice pixels 

RtrPthNoRtr Number of other pixels 

SZAFav Number of pixels with Favorable SZA 

SZALge Number of pixels with Very Large SZA 

VZAFav Number of pixels with Favorable VZA 

VZALge Number of pixels with Very Large VZA 

TFHghRtr Temporal filtered high quality retrieval 

TFDegRtr Temporal filtered low quality retrieval 

TFNoRtr Temporal filtered no retrieval 
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OnFltNoFlt Number of pixels without online simple filtering 

OnFltFltd Number of pixels after online simple filtering 

MaxLSA Maximum Valid Albedo Value 

MinLSA Minimum Valid Albedo Value 

MeanLSA Mean value of Valid Albedo Value 

StdLSA Standard deviation of Valid Albedo Value 

PercentHighQuality OvQltyHghQltyRtr/(TFDegRtr+TFHghRtr) 

PercentFilteredPixel TFDegRtr/ (TFDegRtr+TFHghRtr) 

PercentLandPixels (RtrPthGen+RtrPthSnw+RtrPthDst)/ AllPixelNumber 

PercentSeaicePixels RtrPthSI/ AllPixelNumber 

PercentClearPixels CldConfClr / AllPixelNumber 

PercentLargeSZAPixels VZALge/ AllPixelNumber 

PercentLargeVZAPixels SZALge/ AllPixelNumber 
 
Table 2-10. Metadata list for offline VIIRS albedo 
 

Metadata Items Description 

Overall_Quality:_With_Retrieval Number of Valid Retrieval 

Overall_Quality:_No_Retrieval Number of Invalid Retrieval 

Snow_Season:_Not_in_Snow_Season Number of Snow Free Pixels 

Snow_Season:_In_Snow_Season Number of Snow Pixels 
Retrieval_from_Current_Day:_With_High_

Quality_Retrieval Number of High Quality Retrieval on Current Day 

Retrieval_from_Current_Day:_No_High_Qu
ality_Retrieval Number of Low Quality Retrieval on Current Day 

Number_of_Valid_Retrievals_in_Window:_
0 

Number of Pixels Using 0 Valid Retrievals in 
Filtering  

Number_of_Valid_Retrievals_in_Window:_
1 

Number of Pixels Using 1 Valid Retrievals in 
Filtering 

Number_of_Valid_Retrievals_in_Window:_
2-4 

Number of Pixels Using 2-4 Valid Retrievals in 
Filtering  

Number_of_Valid_Retrievals_in_Window:_
>4 

Number of Pixels Using more than 4 Valid 
Retrievals in Filtering 
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Climatology_Quality:_With_High_Quality_
Climatology Number of Pixels with High Quality Climatology 

Climatology_Quality:_No_High_Quality_Cli
matology Number of Pixels with Low Quality Climatology 

SeaIce_Flag:_Not_SeaIce_Surface Number of Pixels not Sea-ice Covered 

SeaIce_Flag:_SeaIce_Surface Number of Pixels with Sea-ice Covered 

MaxLSA Maximum Valid Albedo Value 

MinLSA Minimum Valid Albedo Value 

MeanLSA Mean value of Valid Albedo Value 

StdLSA Standard deviation of Valid Albedo Value 
 

2.6.4 Algorithm Validation 

A summary of our previous validation results has been given in Section 2.5. In order to 
quantify the retrieval errors and improve the inversion algorithm, we need to carry out more 
extensive validation work. Albedo is continuously measured by several surface measurement 
networks, such as Atmospheric Radiation Measurement at the Southern Great Plains, 
SURFRAD, and Ameriflux projects. We have conducted albedo validation extensively during 
recent years, and will continue this activity for the VIIRS albedo product over more surface 
types.  
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3.  ASSUMPTIONS AND LIMITATIONS  

 
The following sections describe the assumptions in developing and estimating the 
performance of the current version of VIIRS surface albedo algorithm. The limitations and 
potential algorithm improvement are also discussed.  
 

3.1 Assumptions 

The following assumptions have been made in developing the VIIRS surface albedo 
algorithm: 

• Comprehensive database of atmospheric conditions and surface BRDF were used in 
training the direct estimation algorithm. The database is assumed to be 
representative. 

• Albedo climatology derived from historical albedo data sets was used in temporal 
filtering. The current albedo values are assumed to follow the statistical distribution 
and temporal correlation described by the climatology.  

 

3.2 Quality of Upstream Input Data 

Accurate estimation of VIIRS surface albedo depends on reliable input of upstream VIIRS 
data and products, such as TOA reflectance, cloud mask, surface type, snow mask, and sea-
ice concentration. In the section of sensitivity analysis, we have demonstrated the importance 
of some input data products. The temporal filtering algorithm was developed to correct some 
problems caused by inaccurate input data, such as undetected cloud coverage. 
 

3.3 Algorithm Improvement 

The temporal filter can substantially improve estimates of snow-free albedo by filling data 
gaps and reducing random errors. However, its benefits with regards to ephemeral snow 
cases are rather limited. Due to large day-to-day albedo variability, temporally neighboring 
observations are not sufficient for predicting cloudy-day albedo. More sophisticated 
algorithms are needed that can incorporate information other than optical remote sensing 
data, such as microwave remote sensing (Xue et al. 2014) and ancillary data sources (i.e., 
temperature) to infer albedo during cloudy days and to generate a continuous albedo field 
with improved accuracy. 
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