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ABSTRACT: 
 
A daily oceanic climatology to estimate upper ocean thermal structure was developed for application 
year-round in the North Atlantic, and North and South Pacific Ocean basins. The Systematically 
Merged Atlantic Regional Temperature and Salinity (SMARTS) Climatology, the Systematically 
merged Pacific Ocean Regional Temperature and Salinity (SPORTS) Climatology, and the South 
Pacific Ocean Climatology (SPOC) blend temperature and salinity fields from the World Ocean Atlas 
and Generalized Digital Environmental Model at 1/4º resolution for use in a two and half layer model 
to project sea surface height anomalies (SSHA) into the vertical. This higher resolution approach better 
resolves features in the Gulf of Mexico (GOM), including the Loop Current (LC) and eddy shedding 
field, than the coarser 1/2º products of previous studies. Daily mean isotherm depths of the 20ºC (D20) 
and 26ºC (D26), reduced gravity, and mixed layer depth (MLD) were extracted from the climatology 
and provide the physical parameters needed for the projection of SSHAs into the vertical. The 
algorithm for estimation of ocean temperature structure was advanced by an improved characterization 
of the reduced gravity term and an updated objective analysis scheme. 
 
Using SMARTS, SPORTS and SPOC with satellite-derived SSHA and SST fields, daily values of 
D20, D26, MLD, and Ocean Heat Content (OHC) were calculated from 1998 to 2014 using a two and 
a half layer model approach. OHC is an important scalar when determining the ocean’s impact on 
tropical cyclone intensification, as OHC can predict sea surface temperature cooling during hurricane 
passage, controlling the magnitude of air-sea enthalpy fluxes. Airborne and ship-deployed eXpendable 
BathyThermographs (XBT), long-term moorings, and Argo profiling floats provided the in-situ data 
necessary to assess SMARTS and SPORTS estimates of isotherm depths and OHC. Based on over 
520,000 temperature profiles of in-situ data from 1998 to 2014, a clear, direct relationship emerged 
from the detailed analysis between satellite-derived and in-situ measurements of isotherm depths and 
OHC. The SMARTS, SPORTS and SPOC climatologies significantly improved upper ocean estimates 
of the thermal structure and OHC. 
 
This improved OHC product was transitioned to NOAA NESDIS as described in this ATBD. Daily 
fields are generated that includes position, SSHA and error estimates from the objective mapping 
technique, SST, D20, D26, MLD, and OHC. The successful implementation and use of the product 
requires data from at least two altimeters and the daily SSHA updates from the U.S Navy ALPS system 
are sent to the NOAA NESDIS DDS. The product fields will be evaluated monthly when thermal 
structure data from various platforms become available such as Argo floats, XBT transects, mooring 
measurements, and airborne profiling from NOAA research aircraft. The software also runs on 
computers at University of Miami's Rosenstiel School of Marine and Atmospheric Science so the 
products are accessible for experimental planning and research. 
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1.  INTRODUCTION  

1.1  Product Description 
Ocean heat content (OHC) is a measure of the integrated vertical temperature from the 26oC isotherm 
depth to the sea surface where the temperature is the surface boundary condition (e.g., area under the 
curve) as shown in Figure 1-1.  OHC can be determined from ocean thermal profiles or from satellite 
derived estimations.  An algorithm that generates a set of satellite derived OHC products has been 
running in development mode for more than 20 years at the NHC and University of Miami’s Rosenstiel 
School of Marine and Atmospheric Science (RSMAS).  The algorithm is based on a 2.5-layer reduced 
gravity ocean model which uses a blended daily ocean climatology of mean isotherm depths and 
reduced gravities, objectively analysed sea surface height anomaly fields (SSHA) from available 
altimeter missions (e.g., Jason 1, 2, 3, Envisat, SARAL, Cryosat-2), and satellite sea surface 
temperatures (SST) from Remote Sensing System’s Optimally Interpolated SST and NESDIS GEO-
POLAR Blended SST Analysis (Harris and Maturi, 2012) to produce isotherm depths of the 20o and 
26o (D20, D26), mixed layer depth (MLD), and OHC.  The software is efficient in that additional 
satellite data such as another set of altimeter-derived SSHA tracks can be easily ingested into the 
calculation. 
 

 
 

Figure 1-1: Schematic of OHC calculation. The red shading shows the true OHC by integrating the 
black temperature profile. The dashed blue line shows the approximated temperature profile of the 
upper ocean. 
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A high-resolution (0.25° × 0.25°) daily OHC analysis based on this general approach was completed 
for the North Atlantic and North and South Pacific Ocean basins. The new climatologies, the 
Systematically Merged Atlantic Regional Temperature and Salinity (SMARTS: Meyers et al., 2014), 
the Systematically merged Pacific Ocean Temperature and Salinity (SPORTS: McCaskill et al., 2016) 
and the South Pacific Ocean Climatology (SPOC), are based on a weighted blending of the Navy’s 
Generalized Digital Environmental Model (GDEM: Teague et al., 1990) and the Levitus World Ocean 
Atlas (WOA). These new daily climatologies provide a higher resolution depiction of the actual OHC 
for not only hurricane intensity forecasts for the Statistical Hurricane Intensity Forecast Scheme 
(SHIPS: DeMaria et al., 2005) but also for long-term climate studies and coral reef related research. 
An important aspect of this project is to provide detailed evaluations of satellite derived fields to in-
situ data from Argo floats, satellite-tracked drifters, XBT transects, long-term mooring measurements 
in the equatorial Atlantic and Pacific and dedicated AXBT measurements from NOAA’s research 
aircraft in support of the Hurricane Field Program including those from Deep Water Horizon (DWH) 
research flights (Shay et al., 2011, Jaimes and Shay, 2015). This work follows recently published 
approach in the Eastern Pacific and North Atlantic Ocean basins using a revised, blended climatology 
(Shay and Brewster, 2010; Meyers et al., 2014).  Such analyses provide biases between the in-situ 
measurements and the fields and products from the satellite-based sensors. 

1.2  Product Requirements 
The OHC product requires a high resolution SST product for the surface boundary condition of the 
reduced gravity model. A minimum of two (best practices would be at least three) sets of SSHA tracks 
from altimetry missions should be used to resolve the oceanic mesoscale variability. Latency of ~36 
hours is due to receipt and processing of the SSHAs (e.g., objective mapping). Timeliness is a critical 
element given that altimetry missions have different repeat cycles owing to their polar orbiting nature 
with ascending and descending tracks. If an outage extends more than 1 week, the resultant SSHA 
field will not necessarily be accurate and of limited use particularly for use in hurricane forecast 
models.  
 

1.3  Satellite Instrument Description 
Satellite radar altimeters measure sea surface height along repeated tracks. These polar-orbiting 
satellites repeat their exact paths on a 10, 17, 29 or 35-day basis depending on mission requirements 
(Cheney et al., 2002). From 1998 onward, all SSHA fields from radar altimeters over the North 
Atlantic and North and South Pacific Ocean basins were acquired for this study. Our research studies 
have shown that at least two active satellites are required for accurate mesoscale applications of 
altimetry data in determining OHC useful for forecasting hurricane intensity (Mainelli et al., 2008; 
Meyers, 2011). Typically, two or more altimeters were operational at any given time (Table 1-1). 
Altimetry data were acquired from Naval Oceanographic Office and SSHAs were determined using a 
background mean SSH from the Collecte Localisation Satellites’ Combined Mean Dynamic 
Topography 2001 (Lillibridge et al., 2011). 
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Table 1-1: Summary of altimeters with their respective repeat track cycles in parentheses used in 
developing the SMARTS, SPORTS, and SPOC systems in generating daily isotherm depths and OHC. 

 
2. ALGORITHM  DESCRIPTION 

2.1  Processing Outline 

 
The daily real-time OHC processing takes several steps: acquiring the input data, objectively analyzing 
the SSHA, calculating OHC using the 2.5-layer model, and creating ASCII and netCDF output files 
of the products (Figure 2-1). The GEO-POLAR blended SST product (Harris and Maturi, 2012) and 
the altimetry SSHA data files are served to the Data Distribution Service (DDS) each day.  Once the 
retrieval program picks up the data on the DDS (which includes any updates to the data files), the 
OHC program is started. The software first checks to ensure completeness of the files of SST and 
SSHA fields.  Currently, the SST HDF file is subsampled from 5 km to 0.25° resolution, because the 
oceanic climatologies, SMARTS, SPORTS, and SPOC are at 0.25o resolution.  Thus, all data fields 
must be at that resolution for internal consistency in the OHC software. Altimetry derived SSHA fields 
are prepared as ASCII files to be objectively analyzed and mapped using the Mariano and Brown 
(1992) technique described below. Once this step is completed, the SSHA fields are input into a 
reduced gravity model and combined with SMARTS, SPORTS, or SPOC to determine the isotherm 
depths of the 20oC and 26oC water as well as inferring an oceanic mixed layer depth (MLD). The 
approach then uses the depth of the 26oC isotherm, MLD and SST to estimate the OHC at each grid 
point over the basin. Lastly, the software produces two output files, an ASCII file and a self-describing 
netCDF file with all of the products from the OHC processing. 
 
In addition, software will evaluate the data product with Argo floats, XBT transects, long term 
moorings and AXBTs deployed from research aircraft to evaluate satellite derived fields of isotherm 
depths, MLD and OHC to refine the uncertainty limits and error bars. This is an important feature of 
this product because during the hurricane season, the SHIPS model uses OHC to forecast hurricane 
intensity (DeMaria et al., 2005; Mainelli et al., 2008; Meyers et al. 2014). 
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Figure 2-1: Flow diagram of the inputs to the reduced gravity model including the objectively analyzed 
SSHA from various radar altimeters to estimate the depth of the 20oC isotherm which is then used to 
determine the depth of the 26oC isotherm and MLD and the GEO-POLAR SST to calculate OHC.  In-
situ data includes temperature profiles from Argo floats, XBT transects, AXBTs deployed from 
research aircraft, PIRATA moorings in the North Atlantic Ocean Basin and TAO/TRITON moorings 
in the Pacific Ocean Basin. 

2.2  Algorithm Input 

The primary satellite data input to this algorithm are: 1) sea surface height anomaly (SSHA); and, 2) 
sea surface temperatures (SST) from the GEO-POLAR Blended (Harris and Maturi, 2012) product at 
NESDIS. These data are used in a two and half layer reduced gravity model. Currently, the 
algorithm uses Jason-2, SARAL, Cryosat-2, Jason-3 and Sentinel-3A data.  In an evaluation of 
the products of isotherm depths, mixed layer depth and OHC, the approach uses Argo float 
profiling floats, XBT transects, moorings such as PIRATA in the equatorial Atlantic Ocean and 
TAO/TRITON in the equatorial Pacific Ocean, and airborne expendables deployed from 
NOAA research aircraft including pre-hurricane surveys. These evaluations will be conducted 
monthly when enough in-situ data become available. 

2.3  Theoretical Description 

2.3.1  Physical Description 

The underlying approach assumes that the ocean can be described as a two-layer fluid with an oceanic 
mixed layer on top of the upper-most layer.  That is, SSHA represent the changes in thermocline depth 
(e.g. 20oC) based on thermal expansion of sea water. In this context, we infer depths of the 26oC 



NOAA /RSMAS 
  ATBD : Satellite-Derived Oceanic Heat Content Product 

  Page 15 of 49 
 
 

 

isotherm in the upper layer assuming any thermal changes in the upper ocean layer are compensated 
by corresponding salinity changes. The two-layer model is considered a crude approach to 
approximating the upper ocean thermal structure when compared to full 3-D ocean models, but models 
in use today, such as HYCOM have many assumptions and implications for the various ocean 
parameterization schemes (Halliwell et al., 2008; 2011). The temperature and salinity relationships 
(T/S) relationships in the North Atlantic Ocean basin suggest that the depth of the 20oC isotherm is a 
reasonable proxy for this assumption. Even in the Gulf of Mexico, the subtropical water and Gulf 
Common water characteristics begin to converge at this isotherm depth (see Section 3 below).  

2.3.2  Mathematical Description 

Each individual climatology, WOA and GDEM, provided temperature and salinity profiles at each 
latitude and longitude in its resolution. Each temperature profile was interpolated to a 2-meter 
increment using a cubic interpolation scheme to maintain a realistic profile at depths where data were 
less dense. The profiles were interpolated from 2 m, to avoid artificially high ocean skin temperatures, 
down to the deepest observation.  The depths of the 20 and 26°C isotherm were extracted from the 
profile by linearly interpolating between the two depths surrounding the isotherm of interest of the 
interpolated profile. The MLD was determined by finding the deepest point of the interpolated profile 
which is within 0.5°C of the temperature at 2 m. This threshold temperature was chosen following 
Monterey and Levitus (1997) and because it was outside the precision of the instrumentation. Strictly 
using a temperature difference from a near surface value was preferred to using a temperature gradient 
threshold due to the large spatial variability of the structure of the thermocline (de Boyer Montegut et 
al., 2004). Temperature inversions were not of concern because these typically occur in polar regions, 
outside of the domain of this study. 
 
Each individual climatology’s performance in calculating ocean thermal structure was expected to 
vary spatially and temporally due to implicit errors in the climatology. In all three basins, the 2001 
version of the WOA climatology was investigated and used in the blending.  Version 3.0 of the GDEM 
climatology was used for blending in the North Atlantic, while Version 2.1 of GDEM was used in the 
North and South Pacific.  A different version of GDEM was used in the Pacific basins based on 
comparisons of thermal structure with in-situ temperatures, similarly seen in Shay and Brewster 
(2010).  Attempts to divide the North Atlantic and Pacific basins into broad analysis regions resulted 
in minimal differences between skill of the GDEM and WOA climatologies. Instead, the basins were 
divided into 5°x5° boxes in which blending weights were to be determined for each box. Along borders 
between two regions, a 2° linear transitional region to smooth the weighting map was used to avoid 
abrupt borders. The 2° buffer zone was larger than the Rossby radius of deformation (e.g., ~1° in the 
GOM) to avoid gross distortion of features as they translated through transitional zones. 
 
Weights were determined for the northern hemisphere hurricane season (June 1 – November 30) and 
off-season (December 1 – May 31) and for the southern hemisphere hurricane season (November 1 – 
April 30) and off-season (May 1 – October 31). Seasonality of GDEM and WOA necessitated 
weighting schemes for different times of the year. Local RMSD of each individual climatology 
determined the blending weights for the SMARTS, SPORTS, and SPOC climatologies. This parameter 
was selected because it best quantified the predictive strength of the individual climatologies. For each 
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5° box, the weights of GDEM and WOA were determined based on the relative magnitudes of RMSD 
following 
 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺∙𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺𝑊𝑊𝑊𝑊𝑊𝑊

2 +𝑊𝑊𝑊𝑊𝑊𝑊∙𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
2

𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺𝑊𝑊𝑊𝑊𝑊𝑊
2 +𝑅𝑅𝐺𝐺𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

2         

 
In regions with fewer than 50 observations, WOA and GDEM were weighted evenly due to insufficient 
sample size. As part of this research effort, regional coherence of the weighting parameters showed 
both local strengths and weaknesses in GDEM and WOA.  
 
The weighting maps resulting from RMSD analysis depicted the locations where either GDEM or 
WOA were better suited for ocean thermal structure calculation. The D20 weighting map was created 
first, considering the new D20 calculations were needed for estimations of D26, MLD, and OHC. The 
D20 weighting map was also used for the blended climatology of densities for the upper and lower 
layer in the two-layer model.  
 
For the North Atlantic hurricane season, the two-layer model calculated D20 better using the GDEM 
climatology in the GOM and most of the LC regime (Figure 2-2). In fact, GDEM also outperformed 
WOA along the U.S. coastline, being slightly better in the colder waters north of where the Gulf Stream 
(GS) separates from the coastline near Cape Hatteras, North Carolina. In general, the subtropical 
waveguide was dominated by GDEM, particularly along the African coast. The southern extent 
Caribbean Sea and the center of the subtropical gyre tended to be better predicted using WOA. In this 
regard, a blending of these two climatologies was warranted for SMARTS. 
 
Outside of the hurricane season, observations were more sparse and the ventilation of D26 at the 
surface moves southward during the winter and spring months. Again, GDEM vastly outperformed 
WOA in the equatorial wave guide. WOA predicted D20 better near the Caribbean Islands and in the 
western GOM whereas GDEM only slightly improved calculations along the mid-Atlantic and western 
Florida coasts.  Once the weighting maps of D20 were calculated, 𝐃𝐃𝐃𝐃𝐃𝐃������ (mean depth of the 20oC 
isotherm discussed below) was recalculated for the entire basin. Daily values of D26 and MLD were 
then determined based on the ratio between GDEM and WOA climatological values of these 
parameters and the SMARTS climatological value of D20. Following this approach, analysis showed 
GDEM typically performed better in the Caribbean Sea and the western GOM, although neither 
climatology showed marked improvements in the GOM eddy shedding region (not shown). Elsewhere 
in the Atlantic Ocean basin, WOA typically outperformed GDEM except in isolated locations. 
Generally, WOA was better for D26 calculations outside of the hurricane season. 
 
 



NOAA /RSMAS 
  ATBD : Satellite-Derived Oceanic Heat Content Product 

  Page 17 of 49 
 
 

 

 
 

Figure 2-2: Weighting maps for D20 (left) and MLD (right) used to create the SMARTS climatology 
for the hurricane season (top row) and outside of the hurricane season (bottom row).  
 
Weighting maps for MLD were more erratic, although some regional coherence existed in the basins. 
In the GOM during hurricane season, neither climatology stood out in particular, although GDEM was 
slightly more accurate in the Caribbean Sea and the LC. Elsewhere, WOA was typically more accurate 
other than a few locations where GDEM held a slight advantage. Outside of the hurricane season, 
WOA was better for MLD calculations in the GOM and the western equatorial Atlantic Ocean. GDEM 
marginally improved satellite MLD calculations off the northern South American and African coasts, 
as well as in the central North Atlantic Ocean basin. Using these weighting maps with climatological 
values for D20, D26, and MLD, the SMARTS Climatology was created.  Daily values of D20, D26, 
MLD, and OHC were recalculated using satellite altimetry and the new climatology, such that it could 
be compared to results from analyses utilizing the Mainelli (2000) climatology and determine if a 
relative or absolute weighting method was preferable.  
 
In the North Pacific Ocean basin, the weighting maps resulting from RMSD analysis also depicted the 
locations where either GDEM or WOA were better suited for ocean thermal structure calculation. As 
in SMARTS, the D20 weighting map was created first, considering the new D20 calculations were 
needed for estimations of D26, MLD, and OHC. The D20 weighting map was also used for the blended 
climatology of densities for the upper and lower layer in the two-layer model. For the TC season, the 
two-layer model calculated D20 better using the WOA climatology in the (Figure 2-3) over most of 
the basin except for the western and eastern Pacific warm pools and the South China Sea. The eddy 
rich regimes in the western and eastern Pacific are captured by GDEM. During the off-season, WOA 
dominates over most of the basin except in the equatorial eastern Pacific Ocean and the South China 
Sea. The predominance of the GDEM signals is much clearer during the TC season than in the off 
season. A similar pattern emerged for the MLD in both the TC season and the off season for the North 
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Pacific Ocean basin. The WOA climatology for the MLD outperformed GDEM even in the eddy rich 
domain of the western North Pacific Ocean Basin. However, in the South China Sea and the Eastern 
Pacific Ocean basin, GDEM outperformed the WOA climatology.  
 

 
 

Figure 2-3: Same as Figure 2-2 used in the SPORTS climatology.   
 
 

 
 

Figure 2-4: Same as Figure 2-2 used in the SPOC climatology. 
 
The D20 weighting maps for the South Pacific (Figure 2-4) determined whether WOA or GDEM 
correlated better with the in-situ RMSD comparisons. Over most of the domain, the WOA climatology 
dominated the D20 weighting over the GDEM climatology in both the cyclone season and off season 
for D20.  GDEM was more accurate in a region on the eastern side of the domain and several small 
areas in the center of the basin and near the islands of Fiji, New Caledonia, and Vanuatu.  The area 
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south of Australia uses the absolute value of WOA D20, because the GDEM climatology does not 
cover that region. In the South Pacific, MLD weighting is more variable.  GDEM is weighted higher 
in the equatorial region, particularly towards the South American continent. South of the tropics, WOA 
dominates the weighting.  The off season weighting is a little more variable than the cyclone season.  
Again, the area south of Australia uses the absolute value of WOA for MLD, because the GDEM 
climatology does not cover that region.  
 
To justify the use of these climatologies, the resulting blended fields must depict realistic fields of 
these spatially varying variables. When using the absolute blending technique (not shown), sharp 
transitions between the GDEM and WOA climatologies created an unrealistic field. Visual inspection 
of a sample of climatological fields based on the absolute blending scheme showed no evidence of 
transitional areas. Therefore, the relative blending scheme was used to create the realistic fields for 
all parameters needed for the approach model for SMARTS, SPORTS, and SPOC. 
 
Following Leipper and Volgenau (1972), OHC is calculated from the surface to D26, 
  
 OHCObs = ∫ cPρT,S(T − 26℃)dzSfc

D26 . 
 
Density was calculated at every depth using a 4th order polynomial (Miller and Poisson 1981) 
dependent on temperature and an assumed salinity of 35 psu. The specific heat of water, cp, was taken 
as 4200 J∙kg-1∙C-1.   
 
GDEM and WOA climatologies provided the 4-dimensional data needed to construct the climatology 
necessary for the implementation of the two-layer model for calculation of ocean thermal structure. 
Extracted profiles of temperature and salinity were interpolated to a 1-m resolution using a cubic 
interpolation scheme. An iterative process then identified the depth of the 20 and 26°C isotherms and 
applied a linear interpolation between the two points surrounding the isotherm depth to approximate 
the appropriate depth. MLD was defined as the depth where the temperature deviates from the SST by 
a magnitude of 0.5°C. The 2.5-layer model depended on a density difference between upper (ρ1) and 
lower (ρ2) layers. The interface between layers was assumed to be the 20°C isotherm because it was 
typically within the thermocline. Density was calculated at each level of the climatology and the 
density of each layer (ρ1 and ρ2) was estimated as the arithmetic mean of the layer. From the values of 
density, the reduced gravity, g´, was calculated by 
 
 g′ = g ρ2−ρ1

ρ2
 , 

 
where g us the acceleration due to gravity (9.81 m·s-2).  If g’ was less than 0.2 m·s-2, g´ was set to 0.2 
m·s-2 to avoid unrealistic values when applied in the two-layer model. A 15-day running mean applied 
to the monthly climatologies ensured smoother monthly transitions (Figure 2-6). This blending 
technique created a daily climatology which can be used as a background for altimetry calculations. 
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Figure 2-5: A 15-day running mean was used to create the 'daily' climatology. For example, to create 
the October 2nd climatology, the September climatology was weighted 6/15 and the October 
climatology is weighted 9/15. 
 
SSHA data were unevenly spaced over the basin, which necessitated an Objective Analysis (OA) 
scheme to interpolate data to a regular grid. The parameter matrix algorithm of Mariano and Brown 
(1992) grids non-stationary fields using time-dependent correlation functions. SSHA data from 5 days 
before and 5 days after the date of interest were used to ensure basin-wide coverage by at least the 10-
day repeat track altimeters. Parameters for spatial and temporal correlation scales followed Mainelli 
(2000) and are presented in Table 2-1. The SSHA field was assumed to have uniform variance and 
measurement noise was uncorrelated. The OA was performed locally point-by-point, using 20 
influential data points determined by the correlation model from Mariano and Brown (1992) which 
accounts for phase speeds, zero-crossing scales, and spatial and temporal decay scales.  
 
 
 
 
 
 
 
 
 
 
 

 

Table 2-1: Key parameters used in the OA following Mariano and Brown (1992). 

Previous OA assumed a uniform drift velocity over the North Atlantic and North and South Pacific 
Basins to the west-southwest (0.03 °/day westward, 0.01 °/day southward). Drift velocities vary 
spatially with latitude and along bathymetric features (Chelton and Schlax, 1996). To assess the spatial 
variability of feature drift velocity, North Atlantic SSHAs from 2005-2007 were OAed without any 

Operational Mode Dynamic Height
Roughness Parameter 1.1

Tension 0.9
Spline Bicubic

Influential points 20
Zero crossing scale 1.8°

e-folding scale 1.2°
Temporal decay scale 20 days

Confidence level 0.95
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drift velocity correction (Figure 2-7). Three years of OA SSHA fields were plotted in Hovmöller 
diagrams with a north-south and east-west cross-section for all 10°x10° grid boxes.  If the SSHA 
showed clear trends, the drift velocity for that grid was determined by taking the average speed of 
three subjectively chosen trend lines. The entire SSHA dataset was reanalyzed to make adjustments 
using these estimated drift velocities. Similar results were found in the western North Pacific Ocean 
basin in the eddy rich zone at about 25oN from 2002-2004, and in the central South Pacific Ocean 
basin at 25o S from 2002-2004.  Although in some areas, eddy variability may be much slower that 
these rates due to the underlying ocean dynamics.  
 

 
 
Figure 2-6: Hovmöller of SSHA at 15°N in Caribbean Sea (left), at 25oN in the Western North Pacific 
Ocean Basins (middle), and at 25oS in the South Pacific for two years. Drift velocities are on the order 
of 0.1°/day compared to previous estimates of as much as of 0.3°/day. 
 
A reduced-gravity model adjusted the climatological values of D20, D26, and MLD in relation to 
SSHA. In a two-layer model, changes in SSH reflect changes in the depth of the interface between 
layers. If the SSHA was positive (negative), then the upper (lower) layer was thicker (thinner) and the 
interface depth was deeper (shallower). The inferred depth of the 20°C isotherm (D20´) is a function 
of the reduced gravity, the climatological depth of the 20°C isotherm (D20������) and the SSHA, η´. 
 
 D20′ = D20������ + ρ2

ρ2−ρ1
η′ . 
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A uniform stretching or shrinking of the upper layer was assumed in order to calculate the depth of 
the 26°C isotherm (D26´) and MLD´. Therefore, the displacement of D26´ and MLD´ was determined 
by the climatological ratio between the variable of interest and D20������.   
 
 D26´ = D26������

D20������ D20´, 
 
 MLD´ = MLD�������

D20������ D20´ . 
  
Calculations of D20´, D26´, and MLD´ were performed at every grid point in the ocean domain with 
depths greater than 100 m. If the depth of the calculated isotherm was deeper than the bathymetry, 
then the isotherm depth was set to be the depth of the ocean bottom.  OHC was calculated by adjusting 
the OHC expression assuming a temperature profile with a homogeneous mixed layer with satellite 
SSTs and a constant temperature gradient from the base of the mixed layer to D26´ 
 
 OHC´ = 1

2
ρ1cP(D26´ + MLD)(SST − 26℃) .  

 
The estimation of OHC´ is presented graphically in Figure 1-1. Previous studies assumed a 
climatological mixed layer (Shay and Brewster, 2010). Meyers et al. (2014) compared MLD´ to in-
situ MLD values to determine if equation (7) is a valid technique for estimating MLD for OHC 
estimations. In-situ data (D20, D26, OHC, MLD) were compared to the satellite-derived data at the 
nearest corresponding grid point. To account for errors in the OA, only profiles with corresponding 
OA errors of less than 0.5 were compared. This method of calculating ocean thermal structure was 
confirmed to be practical using the GDEM climatology. 
 

2.4  Algorithm Output  
 
Output data products from the OHC software consists of two files in ASCII and NETCDF where the 
output is defined on a 0.25o grid. For the daily files, the fields are latitude, longitude, sea surface 
temperature (oC), sea surface height anomaly (cm), mapping error of the SHA field from the objective 
analysis scheme, 20oC and 26oC isotherm depths, ocean mixed layer depths (m) and OHC (kJ∙cm-2 ). 

2.5  Performance Estimates 

2.5.1  Data Description 

From 1998 to 2014, detailed tests were conducted by comparing the satellite-derived products to in-
situ data sets from Argo floats (see: http://www.argo.ucsd.edu or http://argo.jcommops.org), XBT 
transects (see https://www.nodc.noaa.gov/GTSPP/), PIRATA and TAO/TRITON moorings, and 
aircraft expendables (AXBT/AXCTD) including the Deep Water Horizon measurements from May 
through July 2010 (Shay et al., 2011) and EPIC from 2001(Raymond et al., 2004; Shay and Brewster, 

http://argo.jcommops.org/
https://www.nodc.noaa.gov/GTSPP/
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2010).  In addition, test data sets also included examining the sensitivity of the products on various 
SST products. These types of tests will also be conducted during operations to maintain the system in 
producing the highest quality product possible.  

2.5.2  Sensor Effects and Errors 

The SSHA data from the various altimeters are processed through the ALPS system at NAVO then 
sent to the DDS system at NESDIS. In addition to orbit corrections, the resultant fields have been 
corrected for ionospheric processes, electromagnetic biases, inverse barometric effects and wet and 
dry tropospheric processes (Lillibridge et al., 2011). We expect that the resultant SSHA field has an 
uncertainty of less than a few cm (Cheney et al., 2002).   

2.6  Practical Considerations 

2.6.1  Numerical Computation Considerations 

The algorithm includes an objective mapping and blending technique (Mariano and Brown, 1992) that 
was tested on different data sets including basin scale SSTs. Any updates to that code would be done 
in a research environment at the University of Miami to assess its impact on the OHC operations at 
NESDIS.   

2.6.2  Programming and Procedural Considerations 

Codes are straightforward and documented to show the progression of the steps as shown in the flow 
diagram (Fig 2-1). Any major changes will have to be thoroughly tested in a research mode (includes 
(new in-situ data that may become available in the future) before recommending a change to the 
operational software. 

2.6.3  Quality Assessment and Diagnostics 

The products are evaluated once a month with detailed comparisons to available in-situ data as 
discussed above. This includes least squares fits and regression analyses to assess any problems with 
the input data since the climatology is relatively steady.   

2.7  Evaluation and Validation 

From 1998 to 2014, over 520,000 profiles provided the in-situ oceanographic data to evaluate the 
empirical calculation of D20, D26, MLD, and OHC from the OHC algorithm with SMARTS, SPORTS 
and SPOC climatologies (Meyers, 2011; Shay et al., 2011; Meyers et al., 2014). Over 45,000 profiles 
over the entire North Atlantic Ocean basin were collected from Lagrangian Argo profilers, ship-borne 
eXpendable BathyThermographs (XBTs), Airborne eXpendable BathyThermographs (AXBTs), 
Conductivity, Temperature, and Depth (AXCTDs), and Current Profilers (AXCPs), as well as long-
term PIRATA moorings (Servain et al., 1998). In the North Pacific Ocean basin over a similar time 
span (1998-2012), over 267,000 thermal profiles were used in the careful evaluation of the product. 
As in the Atlantic basin this included floats, XBT transects, process related studies such as the EPIC 
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experiment (Raymond et al., 2004; Shay and Brewster, 2010) AXBTs and the long term 
TAO/TRITON mooring array along the equatorial region essentially spanning from 10oS to 10oN 
(Croin et al., 2002). Over 210,000 thermal profiles were used in the evaluation of the South Pacific 
product.  As before, this includes Argo floats, XBT transects, and TAO/TRITON moorings. 
 

2.7.1 North Atlantic Ocean  
 
Basin-wide profiles of temperature and salinity are available from the Argo float array (Figure 2-7a). 
At any given time, approximately 3000 Argo floats are deployed over the world’s oceans. The typical 
sampling mode of a float is to descend to a “parking depth” of 1000m, where it remains for 
approximately 10 days. Temperature measurements are accurate to ±0.005°C, with depths accurate to 
±5m (Carval, 2010).  The real-time data product is used because temperature and depth measurements 
are sufficiently accurate. Nineteen automated quality control checks of the real time data are performed 
to ensure a realistic profile. These data are valuable in assessing the climatologies because data are 
collected in all regions of the open Atlantic and Pacific and the floats cover data gaps of the repeat 
XBT tracks. However, observations are sparse in the GOM because of the short residence time of 
floats in the LC and geography restricting the profile from completing a full 2000-m profile. XBTs 
are deployed by vessels of opportunity during cross-basin cruises, creating a “snapshot” of the spatial 
variability of temperature in the water column (Figure 2-8b). The XBT payload contains a resistor, 
whose data is transmitted by a fine copper wire back to the ship. The voltages are a measure of the 
resistance of a conductive material, which is directly related to the environmental temperature 
surrounding the thermistor. Older XBTs are accurate to approximately ±0.5°C, while newer models 
are accurate to ±0.2°C (Singer, 1990). Data acquired from XBTs are valuable to diagnose spatial 
characteristics of ocean thermal structure. Transects provide high resolution data across features of 
interest, such as the across the GS determine the horizontal variability of temperature in regions large 
structural gradients.  Temporal changes of these features can be diagnosed by examining repeated ship 
routes.  
 
Ocean observations on synoptic scales and mesoscale can be collected using expendable probes 
launched from an airborne platform. Airborne expendable bathythermographs (AXBTs), conductivity, 
temperature, and depth profilers (AXCTDs), and current profilers (AXCPs) are launched by NOAA 
WP-3D aircraft during reconnaissance flights (Figure 2-7c). When the profiler is launched by the 
aircraft, a parachute is deployed to minimize surface impact. Within a minute on the ocean surface, 
the radio frequency transmitter turns on (known as quieting), within the next 20 to 40 sec, the probe 
is released from the surface unit where the probe is connected to the unit with thin wire. Data are 
multiplexed up the wire, and sent to the aircraft via the RF transmitter where the audio signals are 
received and processed. As with the XBT, the AXBT measures the voltages that are converted to 
temperatures.   Both the AXCTD and AXCP also measures temperature as well as salinity via a 
conductivity ratio (AXCTD) and currents (AXCP). The fall rates of the AXCTD and AXCP are 2.2 
and 4.5 m s-1, respectively. The AXBT fall rate is 1.5 m s-1.  A large fraction of the aircraft data were 
collected during NOAA Hurricane Hunter reconnaissance and research missions prior to, during, or 
after hurricane passage such as Isidore and Lili in 2002  (Shay and Uhlhorn, 2008); Rita in 2005 
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(Jaimes and Shay, 2009) and Gustav and Ike in 2008 (Meyers et al., 2015). In addition, over 800 
profilers were deployed in support of the Deepwater Horizon (DWH) oil spill of 2010 (Shay et al., 
2011).  
 

 
 
Figure 2-7: Distribution of a) Argo floats, b) XBT transects from research ships and Ships of 
Opportunity, c) AXBTs, AXCTDs and AXCPs deployed from research aircraft, and d) PIRATA 
moorings used in the evaluation of SMARTS OHC algorithm. 
 
Raw profiles are passed through a 9-element median filter to remove spikes in the data. The profile is 
then visually inspected to remove any remaining noise or questionable data. To check for potential 
gross bias of the data, profiles are compared to surrounding profiles. Noisy profiles are removed from 
the dataset. Note that temperatures from AXBTs and AXCPs are accurate to ±0.2°C, while AXCTDs 
are accurate to ±0.12°C (Johnson, 1995). Comparisons of AXCTD data from the EPIC field program 
to simultaneous ship-based CTD measurements confirm that AXCTDs are a viable method of 
acquiring accurate hydrographic data (Shay and Brewster, 2010). That is, airborne oceanography 
permits sampling of mesoscale and synoptic features at time scales such that the feature does not 
significantly change over the sampling period. The airborne expendable data fills in a major data gap 
in the LC and the Gulf of Mexico. Flights typically target regions of high eddy variability and locations 
of anomalously high or low SSHs from radar altimeters. These data are compared to satellite-derived 
data to determine if the satellite data resolve large changes in ocean thermal structure after significant 
wind forcing events.  
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Figure 2-8: Scatterplots (left) of D20 (top), D26 (middle), and OHC (bottom) comparing in-situ 
measurements to values derived by the two-layer model using the SMARTS Climatology. Data points 
with differences greater than 4 standard deviations from the mean were removed (<0.5% of points). 
Histograms (right) of errors have bin widths of 10 m, 5 m, and 5 kJ∙cm-2 for D20, D26, and OHC, 
respectively.  
 
The Pilot Research Moored Array in the Tropical Atlantic (PIRATA) off the African coast provides 
temperature data along in the upper ocean (Servain et al., 1998) (Figure 2-7d). Temperature data from 
the surface to 500 m are measured by a thermistor chain at a vertical resolution of 20 m in the top 
140m, and at depths of 180, 300, and 500 m. Daily temperature data accurate to ±0.01°C at the surface 
and ±0.09°C subsurface are sampled for analysis. When temperature changes of over 5°C occur from 
the previous day with unrealistic vertical temperature gradients the data are not used in the analysis. 
Each thermal profile was interpolated to a 2-meter increment using a cubic interpolation scheme to 
maintain a realistic profile at depths where data were less dense, such as deep in the PIRATA array 
and at depth for XBTs. The profiles were interpolated from 2 m, to avoid artificially high ocean skin 
temperatures, down to the deepest observation.  The 20 and 26°C isotherm depths were extracted from 



NOAA /RSMAS 
  ATBD : Satellite-Derived Oceanic Heat Content Product 

  Page 27 of 49 
 
 

 

the profile by interpolating between the two depths surrounding the isotherm of interest of the 
interpolated profile, which reduces the error in retrieval considerably.  Collectively, the in-situ profiles 
provided the necessary data to optimally create and analyze the SMARTS, SPORTS, and SPOC 
Climatologies. 
 

 
 
Figure 2-9: Scatterplots of MLD (left) and OHC (right) comparing in-situ observations to satellite 
estimations using climatological MLD (top) and the adjusted MLD (bottom). The red dashed line 
represents a 1:1 relationship and the linear regression line is solid blue. 
  
Scatterplots comparing in-situ values to SMARTS-derived data showed strong correlations, with 
values typically falling near a slope of unity (Figure 2-8). Histograms of absolute differences between 
satellite and in-situ data showed errors of SMARTS were normally distributed around the mean bias 
where 69% of satellite calculations of D20 were within 20 m of the observed value and 89% were 
within 40 m. The negative bias of D26 was visually noticeable in the histogram as only 65% of D26 
SMARTS calculations were within 15 m of the observed value, while 90% were within 30 m. For 
OHC, 85% of satellite calculations were within 20 kJ∙cm-2 of observed values. The MLD was 
determined by finding the deepest point of the interpolated profile which is within 0.5°C of the 
temperature at 2 m (Fig. 2-9). This threshold temperature was chosen following Monterey and Levitus 
(1997) and because it was outside the precision of the instrumentation. Strictly using a temperature 
difference from a near surface value was preferred to using a temperature gradient threshold due to 
the large spatial variability of the structure of the thermocline (de Boyer Montegut et al., 2004). 
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Temperature inversions were not of concern because these typically only occur in polar regions, well 
outside of the domain of this study. Note the MLD was adjusted using the approach outlined above. 
 

2.7.2 North Pacific Ocean  
 
As shown in Figure 2-10a, Argo float derived thermal profiles were available basin-wide for the North 
Pacific from 2000-2011. In addition, ship-based expendable bathythermographs (XBT) are acquired 
through Volunteer Observing System (VOS), Ship of Opportunity Program (SOOP) and on NOAA, 
UNOLS, and Coast Guard vessels (Figure 2-10b). These data are routinely provided to AOML via a 
Windows based real-time ship and environmental data acquisition and transmission system. This 
software creates a series of reports, which describe ship movements that are transmitted in a real-time 
via the Global Telecommunication System (GTS) to operational data bases to be used by scientists. 
Specifically, XBT profiles from the ships involved in the SOOP are transmitted to receiving stations 
onshore via satellite. These data are placed in the GTS and are made publicly available. The global 
spatial data are available since 1999. Here we accessed data from the website at NOAA AOML and 
processed the data from the Pacific Ocean basin from 2000- 2011. (See 
http://www.aoml.noaa.gov/phod/trinanes/SEAS/). 
 

 
 
Figure 2-10: Distribution of a) Argo floats, b) XBT transects from research ships and Ships of 
Opportunity, c) TAO/TRITON moorings with the EPIC 2001 inset showing grids and transects of 
aircraft expendables deployed from the NOAA WP-3D and the NCAR WC-130J used in the 
evaluation of OHC algorithm for SPORTS. 

http://www.aoml.noaa.gov/phod/trinanes/SEAS/


NOAA /RSMAS 
  ATBD : Satellite-Derived Oceanic Heat Content Product 

  Page 29 of 49 
 
 

 

 
The NOAA Tropical Atmosphere Ocean (TAO/TRITON) mooring array used in assessing SPORTS 
consists of 42 moorings spanning the Tropical Northern Pacific Ocean (Fig 2-10c). Daily sea surface 
and subsurface temperatures are measured at 10 to 15 different depths in the upper 500m with a 
concentration of measurements in the first 100m During the EPIC program (Fig 2-11c inset), these 
TAO/TRITON moorings were enhanced to acquire temperature measurements at 1, 5, 10, 20, 40, 60, 
80, 100, 120, 140, 180, 300 and 500 m, and salinity at 1, 5, 10, 20, 40, 80 and 120 m at 8, 10 and 12oN, 
95oW (Cronin et al. 2002; Raymond et al., 2004). TAO/TRITON temperature structure data from 
moorings at 95oW, 110oW and 140oW were used to assess the OHC climatology based on satellite 
sensing. The thermistors making the temperature measures have a resolution of 0.001°C and an 
accuracy of ± 0.02°C (Freitag et al., 2005).  Pacific Marine Environmental Laboratory (PMEL) 
performs an extensive quality control of the data. Temperature values greater than 99°C and less than 
-9°C are flagged as missing data. Changes in temperature greater than 5°C and vertical gradients 
between adjacent sensors are also flagged.  Any temperature readings outside 3 standard deviations 
from the 90-day mean are flagged as well. PMEL also performs a visual inspection of the profile. Data 
from these moorings were collected daily over a 12-year period from 2000 to 2011.  
 

 
 
Figure 2-11: Same as Figure 2-8 except for the SPORTS Climatology.   
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Each temperature profile was interpolated to 1-m resolution using a piecewise cubic Hermite 
interpolating polynomial from the 1 m depth to 500 m.  The 1-m depth was used instead to avoid an 
artificially high ocean skin temperature. The depth of 20° and 26° isotherms were calculated using a 
linear interpolation scheme using the two depths around the closest to the desired isotherm. The mixed 
layer depth (MLD) was defined as the depth at which the temperature was 0.5°C cooler than the 1-m 
temperature (Monterey and Levitus, 1997). 
 
Argo floats, ship-based expendable bathythermographs (XBTs), EPIC field experiment, and long-term 
moorings from the Tropical Atmosphere and Ocean (TAO/TRITON) array provided in-situ data from 
2000-2011 to help assess the World Ocean Atlas 2001 (WOA) and Generalized Digital Environment 
Model 2.1 (GDEM) climatologies for their use in the SPORTS climatology. GDEM and WOA were 
then combined with satellite-derived SST and SHA fields from radar altimetry, OHC, MLD, and the 
20 and 26oC isotherms were estimated using an the two-layer model from 2000-2011(Mainelli, 2000; 
Pun et al., 2007; Shay and Brewster, 2010; Meyers et al., 2014).  
 
Shown in Fig. 2-11, a regression analysis was performed over the North Pacific Ocean basin between 
the in-situ and model calculated parameters of OHC, MLD, D20, D26 over the 12-year time period 
that included approximately 267,000 thermal profiles. The root mean square difference values 
determined from this analysis will help determine the weights that each climatology were given when 
creating SPORTS. 
 

2.7.3 South Pacific Ocean  
 
Temperature profiles were acquired from several in-situ platforms, Argo floats (Figure 2-12a), XBT 
transects from research ships and Ships of Opportunity (Figure 2-12b), and TAO/TRITON moorings 
(Figure 2-12c), spanning the South Pacific Ocean from 1998-2014.  Temperatures from different types 
of platforms were used to capture the temporal and spatial differences inherent in using stationary 
versus free-roaming instruments. 
 
Argo floats allow for continuous measurement of temperature and salinity in the South Pacific Ocean 
over many locations.  Available from 2000-2014, these data are valuable in assessing SPOC because 
the Lagrangian nature of the floats allow data collection in all regions of the open ocean and cover 
data gaps of the repeat XBT tracks and moorings. 
 
The Global Temperature and Salinity Profile Programme (GTSPP) XBT data were available in the 
South Pacific from 2000-2014.  The GTSPP is a joint Intergovernmental Oceanographic Commission 
and World Meteorological Organization program that maintains a global ocean database of 
temperature and salinity that are both up-to-date and of the highest quality.  Data provided by the 
GTSPP include all profile data reported through the WMO GTS system.  The automated quality 
control is similar to the tests that the Argo program uses, and the manual component catches failures 
not detected automatically.  Quality reviewing procedures include metadata checks, review of the 
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profile data and subsequent quality control editing.  This allows the profiles to be inspected visually 
and compared to climatology and neighboring stations.  Each data point is associated with data quality 
codes explained in the GTSPP manuals.  Many of the XBT tracks are repeated monthly or annually 
and allows for investigation of monthly, seasonal, or annual changes in the heat distribution of the 
upper ocean. 
 
Tropical Atmosphere Ocean/Triangle Trans Ocean Buoy Network (TAO/TRITON) mooring array 
was originally developed to help predict and measure El Nino events in the Pacific Ocean Basin, but 
the large dataset has been used for many other studies.  Temperature profile data from 36 
TAO/TRITON moorings from the equator to 8oS and 140oE to 95oW were extracted for comparison 
from 1998 to 2014.  Because the moorings remain stationary, temporal changes in the dynamics of 
heat in the ocean can be studied. 
 

 
 
Figure 2-12. Distribution of a) Argo floats, b) XBT transects from research ships and Ships of 
Opportunity, c) TAO/TRITON moorings used in the evaluation of the OHC algorithm for SPOC. 
 
Quality controlled data from the three platforms were subject to additional quality control once 
obtained from the monitoring agencies.  Similar to the other basins, South Pacific profiles were 
interpolated to 1-m resolution using a piecewise cubic Hermite interpolating polynomial from 1-m 
depth to 500-m.  The depths of the 20o and 26o isotherms were calculated using a linear interpolation 
scheme between the 1-m depths around the isotherm.  The MLD was defined as the depth at which 
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the temperature exceeds 0.5oC cooler than the 1-m shallowest depth (Monterey and Levitus, 1997). 
Finally, OHC was calculated following the method of Leipper and Volgenau (1972). 
 

 
Figure 2-13. Same as Figure 2-8 except for South Pacific Ocean basin using SPOC. 
 
SPOC derived values of D20 show strong correlations to in-situ values with normally distributed 
absolute differences (Figure 2-13 top).  Similarly, D26 correlations between SPOC derived and in-situ 
values were close to unity, and their differences evenly distributed (Figure 2-13 middle).  OHC 
comparisons were correlated, with the distributions of the differences normally distributed but with a 
slight bias where SPOC derived OHC tended to be slightly higher than in-situ (Figure 2-13 bottom). 
RMS differences of D20, D26, and OHC were 18.7 m, 18.5 m, and 23.1 kJ∙cm-2, respectively. 
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2.8 El Nino Considerations 
 
In the evaluation of the D26 regression analysis for both the North and South Pacific basins, an 
anomalous signal of much deeper in-situ values than climatology estimated values of D26 is observed 
in the analysis (Fig. 2-14 in the circled green area).  An investigation by year showed that this signal 
appeared only in 2002, 2004, 2006, and 2009 of the D26 analysis. A further monthly analysis showed 
that the anomalous signal corresponded to months during which an El Niño event was occurring. An 
El Niño event occurs when the westward wind stress in the equatorial Pacific relaxes, allowing the 
deep surface layer of warm water that normally pools on the western side of the Pacific Ocean basin 
to spread east. This process results in warmer sea surface temperatures and deeper isotherm depths 
above the thermocline in the central and eastern tropical Pacific. The points in the green circle 
represent where the in-situ D26 value was much deeper than the GDEM derived D26.  
 

 
Figure 2-14:  Regression analysis of in-situ versus GDEM2 climatology derived D26 for the North 
Pacific Ocean basin from 2000-2011. The red dashed line represents the 1:1 ratio line, the blue line 
represents the best-fit line, and the green circle highlights the anomalous signal.  
 
The 2002 D26 regression analysis was examined further to verify the El Niño signal. According to 
National Weather Service Climate Prediction Center, the 2002 El Niño event was strongest through 
the months of July to December. More detail is shown in Fig. 2-15 where the D26 regression analysis 
from January to June is on the left and July to December is on the right. The anomalous signal appears 
only in the months associated with the El Niño event. A regional regression analysis confirmed that 
the anomalous signal was present in the tropical Pacific region where El Niño ocean anomalies are 
expected. The anomalous signal occurs below 5oN, in the tropical region, while the signal is absent 
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above 5oN. Similar results were seen in the OHC regression analysis but were not shown here. In-situ 
data in comparison with model derived D26 values identified a clear El Niño signal in the tropical 
North Pacific Ocean basin consistent with the previous studies. Thus the signals are part of the natural 
oceanic variability rather than erroneous measurements that are accounted for the analysis. 

 

 
Figure 2-15:  Regression analysis of in-situ versus GDEM2 climatology derived D26 for the North 
Pacific Ocean basin for 2002 with January through June on the left and July through December on 
the right. The red dashed line represents the 1:1 ratio line, the blue line represents the best-fit line, 
and the green circle highlights the anomalous signal.  
 

2.9  Normalized RMSD in Each Basin 
 

2.9.1 North Atlantic Ocean 
 
To more accurately identify the regions of uncertainty of the 2.5-layer model, a normalized value of 
RMSD (hereafter NRMSD) was examined. NRMSD (Figure 2-16) is the RMSD as calculated above 
normalized by the mean of the local in-situ observations. Maximum values of NRMSD were typically 
highest in the GOM and the northern Atlantic Ocean for most variables of interest. D20 had a large 
NRMSD in the North Atlantic Ocean basin because D20 often ventilates in this region. Even if satellite 
SSTs were just above 20°C, the calculation of D20 would not be adjusted, leading to large errors and 
a manifestation of the drawbacks of the simple two-layer model. Additionally, this was an area of high 
variability due to the GS eddy field, as suggested by the standard deviations of observations (not 
shown). 
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Figure 2-16: Normalized RMSD for D20, D26, MLD, and OHC during the hurricane season. The 
contours represent the differences relative to the variables’ average magnitudes. NRMSD is greatest 
in the GOM and northern Atlantic. 

Mainelli (2000) overestimated D20 throughout the entire basin by over 30 m (Table 2-2). This total 
bias was essentially negligible (<1 m) with the SMARTS climatology where RMSD was reduced by 
37%. In the GOM and LC, Mainelli’s bias reduced to about 20 m and the SMARTS bias was still 
nearly negligible. RMSD was larger in the GOM and LC due to larger depth variability of 
observations. Implementing SMARTS reduced the RMSD of D20 to about 40 m in the GOM and LC 
or a reduction of nearly 20%. 
  
Across the entire basin, RMSD values decreased using SMARTS to estimate D26 by 25%, however 
it should be noted that biases were also of the same magnitude. RMSD decreased from 24 m to 18 m 
using SMARTS, but where Mainelli (2000) overestimated D26 by about 8 m, SMARTS 
underestimated D26 by the same magnitude. Similarly in the GOM and LC where significant spatial 
variability occurs, RMSD was reduced by 25% to about 24 m using SMARTS. In this complex regime, 
Mainelli overestimated D26 by 11 m in the GOM and LC, while SMARTS underestimated D26 by 11 
m.  
 
There were large MLD biases in the Mainelli climatology, underestimating MLD basin-wide by 21 m 
and overestimating in the LC and GOM by nearly 14 m. Such large differences led to a basin-wide 
RMSD of 32 m and 23 m in the GOM and LC, respectively. Mainelli’s estimation of upper ocean 
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thermal structure did not utilize a MLD in the algorithm, whereas the updated two-layer model with 
the SMARTS Climatology uses an adjusted MLD. Using SMARTS reduced basin-wide RMSD by 
almost 50% and a small negative bias of 4 m. In the GOM and LC, SMARTS improvements were 
more modest with a negative bias of 6 m and a 20% improvement in RMSD. 
  
Using all in-situ data from the entire Atlantic Ocean basin, the Mainelli climatology performed well 
when calculating OHC, with a bias of less than 1 kJ∙cm-2 and RMSD of 18 kJ∙cm-2.  SMARTS 
decreases RMSD to 15 kJ∙cm-2 with a small 3 kJ∙cm-2 underestimate.  In the region of greatest concern 
where hurricanes tend to reach severe status in the GOM, Mainelli overestimated OHC by an average 
of 20 kJ∙cm-2 in the LC complex whereas the bias from SMARTS was nearly negligible. SMARTS 
decreased RMSD in the GOM and LC by 35%, from about 40 to 25 kJ∙cm-2. Such large changes in 
OHC calculations could have significant impacts on hurricane intensity forecasting in the SHIPS 
model (DeMaria et al., 2005).  

 
Table 2-2:  RMSD and bias (in parenthesis) of satellite calculation of upper ocean thermal structure 
using Mainelli (2000) and the relative and absolute weighted versions of the SMARTS Climatology. 
Values were calculated using all available in-situ observations basin-wide (top), and in the GOM 
(middle) and LC (bottom). 
 
Given these results of comparing to in-situ measurements and to the Mainelli (2000) approach, 
SMARTS represents realistic estimates of isotherm depths, MLD and OHC. These operational 
products will be evaluated using temperature profiles over the next several years to update and 
improve the model and resultant products. 
 

2.9.2 North Pacific Ocean 
 
To more accurately identify the regions of uncertainty of the two-layer model, a normalized value of 
RMSD (hereafter NRMSD) was examined. NRMSD (Figure 2-17) is the RMSD as calculated above 
normalized by the mean of the local in-situ observations. Maximum values of NRMSD were typically 

Basin RMSD (bias) D20 (m) D26 (m) MLD (m) OHC (kJ/cm²)
Mainelli 48.9 (34.2) 24.1 (7.7) 32.2 (-21.4) 18.3 (-0.6)

SMARTS Relative 31.0 (-0.5) 18.2 (-8.4) 17.2 (-3.6) 15.0 (-3.0)
SMARTS Absolute 30.2 (-0.7) 17.9 (-7.3) 16.9 (-3.5) 14.8 (-2.6)

GOM RMSD (bias) D20 (m) D26 (m) MLD (m) OHC (kJ/cm²)
Mainelli 47.6 (17.9) 32.5 (11.4) 22.1 (13.3) 40.1 (21.7)

SMARTS Relative 41.9 (0.6) 24.5 (-11.6) 17.7 (-5.7) 26.1 (-0.5)
SMARTS Absolute 40.7 (-0.8) 24.5 (-12.0) 17.5 (-6.2) 25.5 (-1.1)

LC RMSD (bias) D20 (m) D26 (m) MLD (m) OHC (kJ/cm²)
Mainelli 49.3 (20.5) 30.9 (11.1) 25.4 (14.0) 36.9 (17.3)

SMARTS Relative 41.3 (-0.3) 23.1 (-10.4) 19.8 (-5.0) 24.7 (-1.4)
SMARTS Absolute 39.8 (-1.5) 22.7 (-10.2) 19.5 (-5.3) 24.0 (-1.6)
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highest in the GOM and the northern Pacific Ocean for most variables of interest. D20 had a large 
NRMSD in the North Pacific Ocean basin because D20 associated with the Kuroshio and its extension. 
If satellite SSTs were just above 20°C, the calculation of D20 would not be adjusted, leading to large 
errors and a manifestation of the drawbacks of the simple 2.5-layer model. In general the D26 and 
MLD signals follow a similar pattern except that the NRMSD are also largest in the eastern Pacific 
due in part to the sharpness of the thermocline in that regime. The buoyancy periods at the base of the 
MLD in this region often exceeds 20 cycles per hour (cph) where the D26 is between 35 to 40 m for 
most of the year (Raymond et al., 2004; Shay and Brewster, 2010). Further complicating the eastern 
Pacific Ocean is the presence of the cold tongue extending from the equatorial region to about 6 to 
7oN. Note that the pattern of the NRMSD for OHC follows the MLD more than the other variables, 
although not nearly as high. Given these patterns, the North Pacific Ocean contains considerable 
spatial variability that is captured by this measure during the TC season. Similar, but slightly weaker 
patterns occur during the off-season (not shown).  
 

 
 

Figure 2-17: Normalized RMSD for D20, D26, MLD, and OHC during the hurricane season. The 
contours represent the differences relative to the variables’ average magnitudes for the North Pacific 
Ocean Basin. 
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2.9.3 South Pacific Ocean 
The South Pacific Ocean NRMSD (Figure 2-18) is the RMSD as calculated above normalized by the 
mean of the local in-situ observations.  During the cyclone season, D20 had large NRMSD in the near 
island chains, like Fiji, Vanuatu and French Polynesia, and off the coast of Ecuador and Peru.  MLD 
NRMSD was highest in Ecuador/Peru region as well as along the Australian coast and eastward in the 
eddy rich zone of 30oS.  The NRMSD for D26 and OHC was large for much of the eastern of the 
domain, due to the sharp thermocline.  Areas close to the Australian coast and eastward in the eddy 
rich zone also had higher D26 and OHC NRMSD.   
 

 

Figure 2-18: Normalized RMSD for D20, D26, MLD, and OHC during the Cyclone season.  The 
contours represent the differences relative to the variables’ average magnitudes for the South Pacific 
Ocean Basin. 

 

2.10 Example Comparisons to Observations in Each Basin 

2.10.1 North Atlantic Ocean 
To illustrate the temporally evolving characteristics in a Lagrangian framework from the SMARTS 
approach, isotherm depths, SST and OHC are compared to the fields from Argo profilers.  The floats 
completed one full profile of the water column every 10 days, the same as the time window of SSHA 
data (e.g., Jason), ensuring a corresponding time series of independently calculated satellite fields 
(Figure 2-19). The data are from an Argo profiler west of the Caribbean Islands in 2008 with 
characteristics representative of the full dataset.  D20 typically did not change greatly between 
subsequent profiles, although satellite calculations showed higher temporal variability in D20. The 
two-layer model’s calculation of D20 was sensitive to SSHA changes, overestimating observed in-situ 
changes but still capturing change on a monthly timescale. Satellite-derived values of D26 also showed 
such overestimated fluctuations, which was expected considering its dependence on D20. In-situ 
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values of D26 fluctuated enough such that climatology alone could not accurately depict the ocean 
subsurface structures. Generally, the two-layer model accurately determined the change of direction 
of the 26°C isotherm. Differences in OHC were a result of disparities between in-situ and satellite 
values of D26. 
 

 
 
Figure 2-19: Comparisons of D20, D26, SST, and OHC between Argo profiler 4900600 (solid black) 
and SMARTS-derived (dashed red) from 2008 located north of the Caribbean Islands.  

 
Repeated XBT transects across the Atlantic provided snapshots of vertical temperature structure, 
which allowed for comparison to SMARTS-derived values. Three annual September transects 
between 2004 and 2006 across a region east of Florida through the GS provided over 120 XBT profiles 
for analysis (Figure 2-20). Along this transect, the satellite algorithm using the SMARTS Climatology 
captured the horizontal variability of OHC within the error of observations. A large fraction of the 
OHC variability was attributed to east/west SST gradients, considering the D26 was essentially flat. 
Satellite calculations of D20 had a shallow bias, particularly near local minima along the 20°C 
isotherm. The satellite methodology accurately calculated the locations of relative maxima and minima 
of D20, except that the model exaggerated the slope of the D20 surface. However, the locations of 
maxima and minima were accurate.  
 



NOAA /RSMAS 
  ATBD : Satellite-Derived Oceanic Heat Content Product 

  Page 40 of 49 
 
 

 

 
 

Figure 2-20: Average temperature observed by XBTs along an east-west transect from 25oN to 28oN 
(inset) with observed (solid) and SMARTS-derived (dashed) depths of D26 (black) and D20 (white). 
Observed OHC (red line, top) is compared to satellite derived values with error bars equivalent to 2σ. 

2.10.2 North Pacific Ocean 
 
TAO/TRITON and SPORTS derived D20, D26, MLD, SST, and OHC were averaged over a twelve-
year period (2000-2011) to obtain the daily averaged values over the year (Figure 2-21). Seasonally, 
SPORTS under estimates D26, and therefore OHC, in the winter and spring. In the summer and fall, 
during the most active part of the tropical cyclone season, SPORTS does a better job of estimating 
D26 and OHC. Over the most year time period, the TAO/TRITON mooring data falls within one 
standard deviation from the SPORTS derived variables. This is especially true during the latter half of 
the year, during the peak of tropical cyclone season. The seasonality of OHC can clearly be seen as 
well with a peak in the fall and a minimum in the late winter.  
 
The two-layer model uses the SSHA to estimate the D20; then the MLD and D26 are found using the 
SPORTS climatology. Small fluctuations away from TAO/TRITON mooring D20 seen in the 
SPORTS derived D20 become exaggerated in the MLD and D26 derived variables. The 
underestimation of SPORTS MLD and D26 lead to an underestimation in the SPORTS OHC. Despite 
the underestimation, SPORTS still manages to accurately estimate the trend in changes of OHC over 
the year with only small departures from the calculated TAO/TRITON OHC.  
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Figure 2-21: A 12-yr averaged time series comparisons of D20, D26, MLD, SST, and OHC from 
TAO/TRITON mooring at 9oN, 140oW in the central Pacific Ocean where the uncertainty (gray 
shaded) is represented by error bars equivalent to 1σ over the 12-year period of concurrent in-situ and 
satellite measurements.   

 
 

 

Figure 2-22: Same as Figure 2-20 except for the North Pacific XBT transect from SPORTS from 14 
to 20oN (see inset) in the western Pacific Ocean. 
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The average OHC from repeat XBT transect along a ship track from Guam to the Philippines in the 
Philippine Sea (Figure 2-21 inset) and the corresponding average SPORTS OHC were averaged over 
the month of September for a three-year period from 2008-2010 (Figure 2-21).  As evident from the 
transect spacing, data were sampled at a higher resolution in the western portion of the transect. 
Possible reasoning for this could correspond to stronger eddies existing in the western Philippine Sea. 
The shear instability generated by the opposing flows of the Subtropical Countercurrent and North 
Equatorial Current help provide energy for the eddies to intensify as they propagate westward in this 
region. The cold and warm eddies can be seen at 125oE and 139oE. The stronger, fluctuating eddies in 
the western Philippine Sea cause more variance in this area.  
 

2.10.3 South Pacific Ocean 
 
To investigate the Eulerian view of heat distribution in the upper ocean, TAO/TRITON and SPOC 
derived D20, D26, MLD, SST, and OHC were averaged over a 17-year period (1998-2014) to obtain 
daily averaged values over the year (Figure 2-23).  During the cyclone (off) season, SPOC 
overestimated (underestimated) D20, but remained within the 1σ error.  D26 was overestimated during 
the cyclone season, but follows the mooring D26 closely.  Satellite SST followed very closely  
 

 
 
Figure 2-23: A 17-year averaged time series comparisons of D20, D26, MLD, SST, and OHC from 
the TAO/TRITON mooring at 8oS, 180o in the central Pacific Ocean.  Uncertainty (gray shaded) 
represents error bars equivalent to 1σ over the 17-year period of concurrent in-situ and satellite 
measurements. 
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to the mooring SST and well within the error.  MLD was slightly overestimated near the end of the 
cyclone season/beginning of the off season, but followed relatively closely to the mooring’s average 
MLD.  SPOC consistently overestimated the OHC throughout the year. For all of the cyclone season, 
the variability was higher during the cyclone season as evidenced in the error. 
 

 
Figure 2-24. Same as Figure 2-22 except a north-south XBT transect and SPOC-derived depths from 
18oN to 0o (inset) in the western South Pacific Ocean. 
 
Thermal structure from locations along an XBT transect (Figure 2-24 inset) during April from Fiji to 
the Equator were averaged for four years, 1998-2002 (Figure 2-24 bottom).  The heat structure shows 
a deep pool skewed towards the equator (5oS) with the highest temperatures around 30oC at 11.5oS.    
D26 tends to follow the bottom of the warm pool, with deeper (shallower) depths in the north (south), 
while D20 tends to deepen away from the equator when D26 starts to shallow.  Average satellite 
derived OHC from 1998-2002 during the month of April and average OHC from 5 annual XBT 
transects reflect the warm pool at 5oN and while SPOC tends to overestimate the OHC, it remains well 
within the error estimates. 
 

3.  ASSUMPTIONS AND LIMITATIONS 

3.1  Performance Assumptions 

The original premise of this OHC product derived from climatologies and satellite data was to at least 
provide forecasters with an idea where the sources and sinks of OHC were located relative to the 
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projected track of hurricanes. Subsequently, the original approach of Mainelli (2000) was brought into 
SHIPS to assess whether it made a difference to the forecast. As per Mainelli et al. (2008), OHC made 
a large impact on Hurricane Ivan (2004). At that point, the approach became much more quantitative 
since the threshold in SHIPS was set to 60 kJ∙cm-2 for OHC to become important. 
 
The basic underlying assumption is that the ocean has an active upper layer with more of an inert 
lower layer where the key isotherm depth is the 20oC (e.g., Goni et al., 1996). Based on measurements 
over the basin, this is approximately correct. However, in the GOM's Loop Current, convergence 
begins at 20oC.  In the Gulf Common Water and STW, one could also argue that it's the 18oC based 
on AXCTD profiles (Figure 3-1). In the layer above this level, we assume that the layer is density 
compensating by the salinity field (which is really not included in the algorithm per se due primarily 
to the lack of salinity profiles). Thus, changes to the thermal structure will be compensated by changes 
in the salinity to maintain a relatively constant density of the upper layer from which we estimate 
reduced gravity between the two layers.  
 

 
 
Figure 3-1: Temperature and salinity diagrams for AXCTDs deployed during a LC survey over the 
GOM in October 2011 from NOAA WP-3D. Solid contours are sigma-t. The water masses are marked 
accordingly where the STW (subtropical water) emanates from the Caribbean Sea and is the classic 
signature of the LC and WCR and SAAIW is Sub Antarctic Intermediate Water. 
 
In addition, the ocean mixed layer sits on top of this upper layer which has a relationship to the 20oC 
isotherm. The in-situ data suggests similar behavior, and changes in the thermocline thicknesses can 
make small adjustments (~3 to 5%) to the MLD. That said, what is lacking is the relationship to surface 
forcing such as heat fluxes and the wind stress which affects SST as well as the MLD changes. In 
addition, current shear at the base of the layer which is the biggest contributor to ocean mixed layer 
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cooling is also not included (Jacob et al., 2000). This must be relegated to the full three dimensional 
ocean models such as HYCOM, not this product (Halliwell et al. 2008; 2011).  
 
Idealized temperature profiles can have significant deviations as we observed during the Deep Water 
Horizon measurements (Shay et al., 2011). That is, the approach does not account for seasonal 
subsurface thermostads. For example, in late winter when MLD is greatest, surface waters are 
gradually heated due to sensible heating at the surface. This warmer surface water does not mix with 
the subsurface cooler waters from the winter mixed layer until a strong wind forcing event or internal 
forcing occurs. WOA and GDEM climatologies (or SMARTS) do not resolve these subsurface 
thermostads in the monthly climatology (Meyers, 2011). 

3.2  Potential Improvements 

Hurricanes are a problem that is not going to go away. Moreover, it is getting clearer with even 
statistical-dynamical models such as SHIPS, that the upper ocean plays a role on hurricane intensity 
change. Moreover, there a few areas in the North Atlantic Ocean basin, mainly the northwest 
Caribbean sea, eastern GOM and north of the Caribbean Islands where rapid intensification occurs 
(Kaplan et al., 2009). Because the ocean does not significantly cool in these regimes, more heat is 
available to hurricanes that often reach severe status (Shay et al., 2000). 
 
Over the course of the development and testing, it became clear the biggest limitation to the work are 
the climatologies that often depart significantly from in-situ profiles given the level of smoothing that 
is performed. These climatologies such as GDEM and WOA are useful at providing profiles in data 
sparse areas. However, regions of significant variability exist, particularly along fronts and eddies. 
 
A large potential improvement could be made if more data profiles become available through profiling 
floats, drifters (with thermistor chains), gliders, XBT transects, AXBTs (AXCTDs) and even animal-
borne sensing CTD tags. In that scenario, direct relationships could be made to the SSHA field without 
the need to use a two-layer model. Even with a data base of ~50,000 profiles in the North Atlantic 
Ocean basin, a simple Baysian Approach relating SSHA to in-situ data had 30% more error than 
SMARTS. Thus, more T/S profiles are needed to relate subsurface density structure to the SSHA and 
SSH fields. This will take a sizeable investment in oceanographic observing to acquire the profiles 
needed to resolve ocean structure. If this were to become a reality, the 2.5-layer approach could be 
replaced with continuously stratified approach, which would decrease the retrieval errors.  
Notwithstanding, this may be prohibitively expensive over the global ocean.  In the absence of this 
investment, we have to relax back to climatologies.  
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