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An algorithm is described for oceanic front detection in chlorophyll (Chl) and sea surface temperature (SST)
satellite imagery. The algorithm is based on a gradient approach: the main novelty is a shape-preserving,
scale-sensitive, contextual median filter applied selectively and iteratively until convergence. This filter has
been developed specifically for Chl since these fields have spatial patterns such as chlorophyll enhancement
at thermohaline fronts and small- and meso-scale chlorophyll blooms that are not present in SST fields.
Linear Chl enhancements and localized (point-wise) blooms are modeled as ridges and peaks respectively,
whereas conventional fronts in Chl and SST fields are modeled as steps or ramps. Examples are presented of
the algorithm performance using modeled (synthetic) images as well as synoptic Chl and SST imagery. After
testing, the algorithm was used on N6000 synoptic images, 1999–2007, to produce climatologies of Chl and
SST fronts off the U.S. Northeast.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The advent of remote sensing from satellites has enabled global
monitoring of oceanic fronts from space. The first property used for
this purposewas sea surface temperature, SST. In a seminal worldwide
survey of oceanic fronts, Legeckis (1978) demonstrated a variety of
SST fronts formed by vastly different physical processes —water mass
convergences, river outflows, tidal mixing, coastal and open ocean
upwelling etc. These processes create sharp horizontal gradients of
SST identified with thermal fronts.

Such gradient zones or bedgesQ can be detected in SST imagery by
objective methods. Two approaches became widely accepted: the
gradient method thanks mainly to its simplicity (e.g. Kazmin and
Rienecker,1996; Moore et al.,1997,1999; Kostianoy et al., 2004; Breaker
et al., 2005); and the histogram method (Cayula and Cornillon, 1992,
1995, 1996), owing to its robustness and ample worldwide validation
(Kahru et al., 1995; Belkin et al., 1998; Ullman and Cornillon, 1999;
Ullman and Cornillon, 2000; Hickox et al., 2000; Belkin et al., 2001;
Ullman and Cornillon, 2001; Mavor and Bisagni, 2001; Belkin et al.,
2003; Belkin and Cornillon, 2003, 2004, 2005; Nieto and Demarcq,
2006;Miller, this issue; Belkin et al., in press). Othermethods have been
tried aswell, notably the Canny (1986) edge detector (e.g. Castelao et al.,
2006; Nieto and Demarcq, 2006), the Holyer and Peckinpaugh (1989)
cluster-shadow method (e.g. Cayula et al., 1991), and the Vazquez et al.
(1999) entropic approach (e.g. Shimada et al., 2005).

Thermal fronts enjoyedmuch-deserved attention partly because of
widely available high-quality global imagery from NOAA satellites
(e.g. Pathfinder data set; Vazquez et al., 1998) that extends back to
mid-1980s. Oceanic parameters other than SST were not widely
available until 1997 when SeaWiFS ocean color imagery became
available, ushering in the era of global monitoring of estimated
chlorophyll-a (Chl) concentration from space. The sheer and ever-
increasing volume of color imagery called for objective methods of its
analysis; in particular, automatic detection of chlorophyll fronts has
beenwidely recognized as a high-priority task (Chan, 1999; Bontempi
and Yoder, 2004; Stegmann and Ullman, 2004; Miller, 2004; Nieto and
Demarcq, 2006; Miller, this issue). And yet progress in this direction
was limited, especially when compared with automatic detection of
SST fronts. The most fundamental reason for this lies in the inherent
complexity of Chl field versus SST, with Chl featuring spatial patterns
that do not exist in SST, namely Chl blooms and Chl enhancement at
thermohaline fronts.

This fundamental difference between Chl and SST fields is illustrated
by two respective conceptual models of a generic front separating shelf
and oceanic waters usually called the shelf–slope front, SSF, or shelf
break front (Figs.1–5). A typical SSTor Chl front can bemodeled as a step
function or ramp (Fig. 2) since the front is a sharp boundary between
two relatively uniformwater masses with different temperatures or Chl
concentration. This simple structure canbe seen ina Chl imageof the SSF
off theU.S. Northeast in Fig. 3.However, the same frontduringadifferent
season or year may appear quite differently in Chl field. The most
peculiar cross-frontal structure characteristic of Chl field features
elevated Chl peaking on – or close to – a respective TS-front. This
phenomenon is called chlorophyll enhancement (at a hydrographic
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front); its transverse structure can bemodeled as a peak (Fig. 4). The Chl
image of the SSF off the U.S. Northeast in Fig. 5 shows a large-scale Chl
enhancement extending over 1000 km along the SSF; similar patterns
have been repeatedly observed and extensively studied in this area
(Marra et al., 1990; Ryan et al., 1999a,b; Stegmann and Ullman, 2004).

The exact form of the peak model may vary in the above concept
that simply illustrates profound differences often observed between
SST and Chl patterns in frontal zones. Another important aspect of the
Chl field is patchiness on a variety of scales, evident from ocean color
imagery and in situ data. Spatial structure of Chl field is a product of
interplay of physical, chemical, and biological processes, and therefore
is inherently more complex than the structure of physical fields such
as temperature and salinity. Patchiness is a hallmark of Chl field. It
may be formed by physical dynamics, e.g. by the underlying
patchiness of the TS-field, and it may also be formed by biological
dynamics; it may also result from physical–biological interactions and
feedbacks.

The observed richness of spatial patterns and features in the Chl
field defies a simplistic approach to front detection based on a single
model of cross-frontal transverse structure, be it a step, ramp, peak, or
patch. However, there is a common feature associated with the
various patterns, which is the local maximum gradient. This brings us
back to the gradient method and its basic problem: noise. Since every
differentiation (gradient computation) results in noise amplification,
the noise should be dealt with before front detection/feature
extraction. In this work we demonstrate that effective noise suppres-
sion combinedwith feature preservation allows spatial gradients to be
computed and mapped in a way that brings out diverse frontal
patterns in the Chl field as well as SST fronts.

2. The algorithm and its performance on model images

Our approach to front detection is based on a simple premise:
Fronts and other features of interest such as Chl peaks and Chl
enhancement at fronts can be revealed in satellite images by a
contextual filter that removes noise but preserves the features. The
second step is traditional in edge detection: since the features of
interest are characterized by enhanced gradients, an edge detector,
e.g. Sobel operator, would bring out these features in images that have
been processed with the contextual feature-preserving filter.

2.1. Contextual median filter

The median filter (MF) is a highly efficient technique of digital
filtering that removes isolated noise while preserving edges in data.
When applied to a one-dimensional (1D) array, MF replaces the

central value of a sliding window of an odd size by the median of
sorted data from this window. When applied to an image, MF first
converts each window matrix to a 1D array, then proceeds as above.
This is used as a pre-processing step of other front detection
algorithms (e.g. Cayula and Cornillon, 1992).

Thanks to its edge-preserving property, we have chosen MF for the
first step of our front detection algorithm. At the same time, it was
necessary to eliminate another – undesired – property that standard
MF shares with all other digital filters; this property can be called
extremum alteration. Indeed, standard MF always alters peaks and
ridges by clipping them. In other words, standard MF degrades
isolated sharp extrema and roof edges by making them blunt. This
property is especially detrimental to, and therefore not acceptable in,
any algorithm for feature extraction from Chl field since sharp isolated
extrema (peaks) correspond to local Chl blooms, while ridges (roof
edges) correspond to Chl enhancement at fronts — and both features
are common in Chl fields.

To avoid extremum alteration, the digital filter must be able to
recognize sharp extrema (peaks) and ridges (roof edges) – and leave
them intact. In other words, the filter has to be context-sensitive and
selective. The central novel idea of our median filter is that it considers
a small window within a larger context; therefore this method can be
called contextual median filter. In oceanography, the first contextual
median filter was developed for automatic classification of vertical
profiles; it was validated on large climatological data sets from the
North Pacific (Belkin, 1986, 1991). Since vertical profiles are 1D arrays,

Fig. 1. Plane view of a generic shelf–slope front.

Fig. 2. Ramp model of Chl distribution across a generic shelf–slope front.

320 I.M. Belkin, J.E. O'Reilly / Journal of Marine Systems 78 (2009) 319–326



Author's personal copy

all possible 1D configurations of sharp extrema were explicitly
described by a set of inequalities and hard-coded into a selective
MF. In our present work we used the same approach; extended it to
2D; and applied it to satellite imagery. Specifically, satellite data (Chl
or SST) from a sliding 3×3-pixel window are considered within the
context of a concentric 5×5-pixel window. The main problem in 2D is
that there are too many possible configurations of 2D sharp extrema
and roof edges to be explicitly described by a set of inequalities; this
would be impractical. Instead, the contextual MF makes all possible
omni-directional 1D slices across the center of a sliding 5×5-pixel 2D
window; analyzes these slices; and makes a decision whether to filter
the window's central pixel or leave it intact.

The above description of the algorithm is elaborated below as
pseudo-code:

2.1.1. Contextual median filter (MF3in5) algorithm pseudo-code
1. Check for peaks and troughs within 1D 5-point slices through a
sliding 5×5 window. The window slides east–west (E–W), north–
south (N–S) across the image:

for I=3:NROWS-2
for J=3:NCOLS-2

Make the WE slice across the window center A(I,J);
Make the NS slice across the window center A(I,J);
Make the NW–SE slice across the window center A(I,J);
Make the NE–SW slice across the window center A(I,J);
If the window center A(I,J) is a 5-point minimum or
maximum along all four 5-point 1D slices, flag it as Peak-5

end
end

2. Check for peaks and troughs within 1D 3-point slices through
sliding 3×3 window. The window slides west–east, north–south
across the image:

for I=3:NROWS-2
for J=3:NCOLS-2

If the window center A(I,J) is a 3-point maximum or
minimum in 2D, mark it as Peak-3

end
end

3. Apply the selective 2D 3×3 median filter within sliding 3×3
window. If the window center is a significant 5-point extremum
(Peak-5), leave it intact (do not blunt it with median filter), otherwise
if the window center is a spike (Peak-3) use the 2D 3×3 median filter:

for I=3:NROWS-2
for J=3:NCOLS-2

if (Center is Peak-5) skip the 3×3 Median Filter
elseif (Center is Peak-3)

apply the 3×3 Median Filter
end

end
end

The above description and pseudo-code explain how contextual
MF works during a single pass over a satellite image. In many
applications, median filters are only applied once, as a single pass,
since computational cost of iterative MF is often believed to be
prohibitive. In reality, however, the iterative MF is quite efficient and

Fig. 3. Example of a stepwise change of Chl across the shelf–slope front (SSF) described
by the ramp model (Fig. 2). Shown is the Chl map for the NW Atlantic from SeaWiFS
data, September 2002.

Fig. 4. Peak model of Chl distribution across a generic shelf–slope front.
Fig. 5. Example of Chl enhancement at the shelf–slope front (SSF) described by the peak
model. Shown is the Chl map for the NW Atlantic from SeaWiFS data, April 2001.
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computationally inexpensive owing to the following properties
(Gallagher and Wise, 1981):

(1) Iterative MF in 1D always converges: After a number of
iterations, the next iteration does not alter the signal;

(2) Iterative MF converges to the so-called root signal, which is
locally monotonous consisting of monotonous segments
(ramps) and plateaus;

Iterative MF converges fast: The number of iterations until
convergence, NITER, does not exceed (N−2)/2, where N is the number
of data points in the 1D array to be filtered. Since NITER is a linear
function of N, iterative MF converges much faster than most digital
filters, whose convergence rate depends nonlinearly on the number of
data points; typically, NITER~N2. In our experiments with model
(synthetic) images described below,MFconverged aftera few iterations.

2.2. Testing contextual median filter on model (synthetic) images

Performance of the contextual MF was evaluated on model
(synthetic) images (Figs. 6–8) that capture main spatial features of
frontal zones on a variety of scales:

1. Large-scale water mass fronts, e.g. Gulf Stream (100–1000 km).
2. Meso-scale fronts around eddies, especially rings (50–100 km).
3. Meso-to-small-scale fronts around spin-off eddies (bshinglesQ) that

develop on large-scale and meso-scale fronts (10–50 km).
4. Chl enhancement at fronts (Chl ridges).
5. Local Chl blooms (Chl peaks).

The above features were modeled against spatially varying fields
to test the filter's insensitivity to the background. Testing the filter on
the widely meandering Gulf Stream (GS hereafter), round-shaped

rings and spiral eddies/ridges confirms the filter's rotational
invariance.

The GS north and south edge (bwallQ) have been intentionally
corrupted by adding 1-point spikes and 3-point spikes that alternate
along each edge. To test the algorithm's insensitivity to spike rotation/
orientation, meridionally-oriented spikes were added to the north
wall, while zonally-oriented spikes were added to the south wall. Two
kinds of horizontal spikes in xy-plane were used for testing:

1. Spikes created by swapping adjacent pixels. After these spikes are
added, the GS edges look frayed.

2. Spikes created by spreading the GS warm pixels outward. After
these spikes are added, the GS edges look rugged.

The swap and spread spikesmake themodel Gulf Streamedgesmimic
small- and mesoscale shingle-like meanders commonly observed along
edges of the real Gulf Stream and other large-scale fronts (Fig. 6).

Rings (Fig. 6) and spiral eddies-ridges (Fig. 7) vary in size to test the
filter's scale invariance and its insensitivity to feature dilation (scaling
transformation). The spiral eddies-ridges also vary in structure:
narrow ridges (left column) are only one pixel across, whereas wide
ridges (right column) are three pixels across and have a sharp crest.

Chl peaks (blobs) are of three sizes (Fig. 8): 1-pointers are spikes
assumed noise that must be removed, whereas sharp 3-pointers and
5-pointers defined on 3×3 and 5×5 compacts respectively need to be
preserved intact. Since the 1-pointers are along z-axis, they are called
vertical spikes.

2.3. Noise removal and smoothing

Since we are interested in preserving even relatively small-scale
features, just a few pixels across, we do not use any smoothers, e.g.
Gaussian, oftenused in applicationselsewhere. In those applications, the

Fig. 6. Contextual median filtering of the model Gulf Stream and its rings. The model Gulf Stream's edges are frayed with horizontal spread and swap spikes. Both types of horizontal
spikes and isolated vertical spikes within rings are removed by the contextual median filter MF3in5.
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signal (object) has a substantially larger scale, which is typically at least
an order of magnitude larger than the noise; therefore a smoothing
operator might improve the object's visibility in the image. In our case,
the signal-to-noise scale ratio can be as small as 3, e.g. 3-pixel Chl peaks
versus 1-pixel spikes. Therefore, in our situation, any smoothing could
be detrimental to gradient computation and climatology of relatively
small but biologically important features in Chl field.

2.4. Gradient computation

The gradient vector is computed by the Sobel operator consisting
of two 3×3 convolutionmasks or kernels:GX=[−10+1;−2 0+2;−1
0 +1]; and GY=[+1 +2 +1; 0 0 0; −1 −2 −1]; GY is simply GX
rotated 90 degrees counter-clockwise. These kernels are used to calculate
two images, Gx and Gy respectively, containing approximations for
derivates in X and Y directions. If A is the original image, then Gx=GX*A
andGy=GY*A, where * is the convolution sign. At each point of the image,
gradient magnitude and direction are computed asGM=sqrt(Gx2+Gy2)
and GD=arctan(Gy/Gx) respectively. The Sobel operator is known as a
simple and effective way of enhancing visibility of edges in digital images
and is widely used in a variety of applications, partly owing to its ultimate
simplicity.

2.5. Gradient mapping: log-transformation of Chl data

Chlorophyll distribution on the global scale is approximately log-
normal (Campbell, 1995). Therefore Chl data are usually log-normally
transformed before any processing, mapping and statistical evaluation
(e.g. Gregg and Conkright, 2001; Gregg and Casey, 2004). We have
computed global Chl distribution from SeaWiFS, 1997–2007 (not
shown) to confirm earlier findings based on spatially limited or
irregular data (e.g. Campbell, 1995). We have also found a similar log-
normal distribution in our study area (not shown) which encom-
passes shelf, slope and Sargasso Sea water and the three-orders-of-
magnitude range in surface Chl. Therefore we have log-normally
transformed original Chl data and calculated Chl gradient from the log-
normally transformed data. Our logarithmic gradient of Chl at every
pixel is the difference between natural logarithms of Chl at adjacent
pixels that is the natural logarithm of the ratio of adjacent Chl values.

3. Front detection in real satellite images

The algorithm was thoroughly tested on real satellite images that
cover the Northeast U.S. Continental Shelf Large Marine Ecosystem
(Fig. 9). Two examples of synoptic frontal maps for Chl and SST are

Fig. 7. A. Contextual median filtering of ridges. Thin (1-pixel wide) and wide (3-pixel wide) spiral ridges are shown before MF (a), after standard MF (b), and after contextual MF
(c). Insets are enlarged in Fig. 7B. B. Contextual median filtering of ridges (enlarged insets from Fig. 7A). Thin (1-pixel wide) and wide (3-pixel wide) spiral ridges (top panel) are
processed with standardMF (left) and the contextual MF3in5 (right). StandardMF removes thin ridge and blunts the crest of wide ridge (bottom left panel). Contextual MF3in5 does
not alter either ridge, thereby preserving intact both ridges (bottom right panel).
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presented in Fig. 10. After testing on selected synoptic images, the
algorithm was used to generate over 6000 daily frontal maps for the
Mid-Atlantic Bight and the greater Northwest Atlantic area, from
1997–2007, for Chl and SST. These synoptic (instant) maps reveal a
complex pattern of fronts on a variety of scales, from O(1000 km)
down to the satellite data resolution, O(1 km). The smaller scales,
between O(10 km) and O(1 km), remain virtually unexplored. And
yet, these smaller scales may well be critical for physical–biological
interactions. To most species that live far from large-scale fronts, the
sub-mesoscale range, O(1–10 km), is the only scale that matters, and
now we resolve this scale. It is also important to observe directly
abrupt changes of dominant frontal scales from one region to another
(Fig. 10). Indeed, the dominant scale over Georges Bank is very small
compared to that in the Gulf of Maine; the latter, in turn, being
markedly smaller than the dominant scale in the Slope Sea and south
of the Gulf Stream. These scales are expected to change as the season
progresses, and they also may change interannually; we plan to
investigate these processes quantitatively from satellite data.

4. Discussion

The newly available satellite frontal data base generated with the
new algorithm opens an unprecedented opportunity to study
quantitatively spatial and temporal relationships between Chl and
SST fronts using an automatic, objective method. One of the most
interesting problems in this respect is the spatial offset between SST
and Chl fronts (e.g. Stegmann and Ullman, 2004). This problem has
barely been touched upon; high-resolution ground truth in situ
observations are necessary to quantify the Chl–SST cross-frontal offset
and its seasonal variability.

Another important application of the new algorithm is a general-
purpose frontal tracking and mapping. It is well known that even
large-scale thermal fronts like the Gulf Stream and Kuroshio all but
disappear at the sea surface in summer; their surface manifestation
being almost completely obliterated by summer warming that acts to
decrease spatial contrasts across thermal fronts by creating a thin,

spatially uniform upper layer that masks the fronts. Fortunately, these
fronts can be detected from the Chl field. In many instances, frontal
visibility in the Chl field actually improves in summer as can be seen,
for example, from frontal maps in Section 3, where the Gulf Stream
bnorth wallQ is much better delineated in Chl field vs. SST, in summer.
Similar observations have been made in the NW Pacific where the
Kuroshio Front can be reliably detected from Chl field in summer
when the front's thermal manifestation disappears (Takahashi and
Kawamura, 2005; the Kuroshio Front's summertime disappearance in
SST field has been noted by Hickox et al., 2000). In the Gulf of Mexico,

Fig. 8. Contextual median filtering of spikes and blobs. The inset in the original test image A is enlarged and shown before (B) and after (C) the entire image is processed with the
contextual median filter MF3in5 that completely removes ordinary spikes (black 1-pixel specs in B) but preserves sharp 3- and 5-point peaks (yellow and orange specs in C) that may
represent localized point-wise chlorophyll blooms.

Fig. 9. Base map of the study area.
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Legeckis et al. (2002) used Chl to map the Loop Current Front in
summer (June–October) when the front's SST signature vanishes due
to seasonal heating of surface layer. Thus, an optimum front tracking
system should rely on both observables, SST and Chl, and it should
emphasize the importance of Chl front mapping in summer. Besides
SST and Chl, such a system could also use sea surface height data from
satellite altimeters.

5. Summary

In this work, a new front detection algorithm is described based
on a contextual median filter that removes impulse noise (spikes) in
satellite imagery and preserves important oceanographic features of
chlorophyll field such as peaks (localized blooms) and ridges
(chlorophyll enhancement at hydrographic fronts) in addition to
steps and ramps typical for SST fronts. The algorithm is tested first
on model (synthetic) images and then on 6000 real synoptic images

from 1997–2007, both Chl and SST, by producing frontal climatol-
ogies for the Mid-Atlantic Bight and a greater Northwest Atlantic;
these results are presented in detail elsewhere (Belkin, I.M., J.E.
O'Reilly, K.J.W. Hyde, and T. Ducas (2008) Satellite climatologies of
chlorophyll and SST fronts off the U.S. Northeast, Progress in Ocea-
nography, in Belkin et al., in preparation). These frontal climatologies
document spatial, seasonal and interannual variability of large-scale
fronts associated with major western-boundary currents such as the
Gulf Stream, North Atlantic Current, and Labrador Current; water
mass fronts such as the Shelf–Slope Front; tidal mixing fronts around
Georges Bank and Gulf of Maine; and fronts associated with
buoyancy-driven coastal jets due to river discharge. Substantially
different frontal scales are found to dominate certain regions, e.g.
Gulf of Maine and Georges Bank. Owing to the algorithm's feature
preservation and MODIS imagery's high resolution, small-to-mesos-
cale (O(1 km) to O(10 km)) fronts can be reliably detected and
statistically studied from remote sensing data.

Fig. 10. Examples of the algorithm performance on synoptic satellite images of SST (top row; 3 May 2001) and chlorophyll (bottom row; 14 October 2000). Left column, original
images. Right column, gradient magnitude.
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